TinyML-Based Traffic Sign Recognition on MCUs

Aykut Emre Celen
a.e.celen@student.tudelft.nl
Delft University of Technology
The Netherlands

Abstract

Real-time traffic sign recognition on microcontrollers (MCUs) in-
troduces challenges due to MCUs’ limited memory and process-
ing capacity. In this work, we investigate the trade-offs between
model size, classification accuracy, and inference latency within
the hardware constraints of MCUs. We design an efficient CNN
called AykoNet with two variants for traffic sign recognition on
MCUs: AykoNet-Lite, which prioritizes model size and inference
latency, and AykoNet-Pro, which prioritizes classification accu-
racy. We train AykoNet on the German Traffic Sign Recognition
Benchmark (GTSRB) and specifically optimize it for deployment on
the Raspberry Pi Pico platform, which is based on the MCU RP2040.
AykoNet-Lite delivers 94.6% accuracy with only a 36.8 KB model
size and 55.34 ms inference time, while AykoNet-Pro achieves 95.9%
accuracy with an 80.18 KB model size and 87.13 ms inference time.
Our design shows the effectiveness of our domain-specific pre-
processing, class-aware data augmentation, depthwise separable
convolutions, and hardware optimizations. The experimental re-
sults validate the feasibility of real-time traffic sign recognition in
resource-constrained embedded systems. The source codes of this
work are available here: https://github.com/aecelen/aykonet

CCS Concepts

« Computing methodologies — Computer vision; « Computer
systems organization — Embedded systems.

Keywords

TinyML, traffic sign recognition, CNN, data augmentation, micro-
controllers.

1 Introduction

Real-time traffic sign recognition enables autonomous navigation
systems to interpret and respond to traffic regulations [12, 13]. In-
tegrating such vision-based recognition capabilities into microcon-
trollers (MCUs) supports the development of low-cost intelligent
transportation systems [1, 4]. However, deploying vision systems
on MCUs introduces difficulties due to the limited memory and
processing capacity of MCUs. The field of Tiny Machine Learning
(TinyML) bridges this gap by adapting machine learning models to
run efficiently on ultra-low-power MCUs [16]. Achieving real-time
performance, on the other hand, requires optimization, as the fun-
damental challenge lies in balancing classification accuracy, model
size, and inference latency within the constraints of hardware.

In this work, we address the following research question: How
can we design an efficient TinyML model for real-time traffic sign
recognition on MCUs? We explore the architectural trade-offs be-

tween model size, inference speed, and accuracy. We present AykoNet,

an efficient network architecture for traffic sign recognition opti-
mized specifically for deployment on the MCU Raspberry Pi Pico.

Ran Zhu
r.zhu-1@tudelft.nl
Delft University of Technology
The Netherlands

Qing Wang
qing.wang@tudelft.nl
Delft University of Technology
The Netherlands

Our approach achieves over 90% accuracy with inference times
under 100 ms, demonstrating the feasibility of achieving real-time
traffic sign recognition on embedded systems such as MCUs.

The rest of this paper is organized as follows. Section 2 reviews
related work in efficient convolutional neural networks and traf-
fic sign recognition on MCUs. Section 3 describes our AykoNet
architecture and training methodology. Section 4 details our exper-
imental setup and results. Section 5 discusses the implications and
limitations of AykoNet. Section 6 concludes the paper and outlines
future research directions.

2 Related Work

Recent literature has shown rising interest in designing lightweight
and efficient convolutional neural networks for resource-constrained
devices, e.g. [9, 10, 15]. This section presents two key architectures
relevant to our work: MobileNets [8], for efficient general-purpose
inference, and GiordyNet [6], a traffic sign recognition model specif-
ically optimized for STM32 microcontrollers.

MobileNets, developed by Google in 2017, are a class of efficient
convolutional neural networks specifically designed for mobile and
embedded applications [8]. MobileNetV1, in particular, has been
widely adopted in TinyML applications and is featured as a rep-
resentative model for person detection on MCUs in [16]. The key
innovation of MobileNets is the use of depthwise separable convolu-
tions, which decompose standard convolutions with computational
cost Dg XDg XMXNXDgXDpg, where D is the kernel size, M is the
number of input channels, N is the number of output channels, and
Dr is the spatial dimension of the feature map. The decomposition
splits this into two separate operations: a depthwise convolution
with cost D X Dg X M X Df X DF followed by a pointwise con-
volution with cost M X N X Dr X Dp. This factorization reduces
computational complexity to (Dg X Dg X M+ M X N) X Dg X D [8].
Furthermore, MobileNets introduce a width multiplier (@) that al-
lows the model to be scaled to match specific hardware constraints.

GiordyNet [6], developed at ETH Zurich in 2020, offers a strong
balance between accuracy and memory usage for traffic sign recog-
nition on MCUs. The model is trained on the German Traffic Sign
Recognition Benchmark (GTSRB) [7], a widely used dataset contain-
ing 43 classes of traffic signs. GTSRB is also employed by other traf-
fic sign recognition systems, such as MASG-Net [5] and Advanced
Driver Assistance System [2, 11]. GiordyNet combines domain-
specific preprocessing with an efficient architecture tailored for
MCUs. It processes grayscale images to reduce the number of input
channels and applies photometric distortions to enhance robust-
ness against varying lighting conditions. As a result, GiordyNet
achieves a high accuracy of 94.7% on the GTSRB test set and uses
significantly less RAM compared to SermaNet, the state-of-the-art
neural network model from the GTSRB competition [6].

https://github.com/aecelen/aykonet

While MobileNets offer efficient inference through depthwise
separable convolutions, they are general-purpose vision models
and lack design optimizations tailored for traffic sign recognition.
GiordyNet, on the other hand, demonstrates high accuracy on traf-
fic signs due to its domain-specific preprocessing and architectural
choices [6]. However, its use of standard convolutions results in
computationally heavy inference. This highlights a gap in exist-
ing solutions: the need for a model that combines domain-specific
optimizations with computational efficiency.

3 AykoNet

In this work, we present AykoNet, a novel architecture that ad-
dresses the gap in existing solutions. Our model incorporates Gior-
dyNet’s domain-specific preprocessing techniques while integrat-
ing MobileNet’s efficient depthwise separable convolutions. This
approach aims to reduce model size and inference time compared
to standard convolutional architectures. Additionally, to maintain
high classification accuracy despite these optimizations, we intro-
duce a class-aware data augmentation strategy that handles the
class imbalance in the GTSRB dataset.

3.1 Data Preprocessing

Aykonet is trained on the GTSRB dataset, which contains 39,166
training and 12,629 test images across 43 different traffic sign classes.
Image sizes range from 15x15 to 250x250 pixels, and are captured
under diverse lighting conditions, viewing angles, and weather
scenarios, making the dataset a realistic benchmark for traffic sign
recognition. We convert all images from RGB to grayscale during
preprocessing, following the GiordyNet approach. This channel
reduction from three colors to one decreases computational com-
plexity and memory usage while preserving essential structural
features like edges and shapes. For traffic signs, which are designed
with high contrast and distinctive forms for visibility in varied
conditions, the shape information captured in grayscale is often
sufficient for accurate classification [6]. All images are then resized
to 32x32 pixels using bilinear interpolation. This step standard-
izes input dimensions and reduces memory usage while preserving
sufficient detail for accurate classification. The chosen resolution
represents a balance between computational efficiency and repre-
sentational fidelity, as demonstrated in GiordyNet’s findings [6].
Figure 1 illustrates the preprocessing pipeline, demonstrating the
transformation of an original high-resolution RGB image of a “Ve-
hicles over 3.5 tons prohibited” traffic sign into its 32X32 grayscale
representation, which will be used for our model training and in-
ference.

3.2 Class-Aware Data Augmentation

The GTSRB dataset, consisting of 39,166 images distributed across
43 distinct classes, exhibits a significant class imbalance. In an ide-
ally balanced scenario, each class would contain approximately
910 images. However, the actual distribution ranges from only 210
images to as many as 2250. This results in an imbalance ratio of
roughly 1:11 between the least and most represented classes. Specif-
ically, the least represented class is Speed limit (20 km/h) (ID: 0)
with 210 images, while the most represented class is Speed limit
(50 km/h) (ID: 2) with 2,250 images, deriving an imbalance ratio

Aykut Emre Celen, Ran Zhu, and Qing Wang

Figure 1: Preprocessing of the images: an example for the
traffic sign “Vehicles over 3.5 tons prohibited”.

of 10.71x. Such disparity can lead to biased models that perform
poorly on underrepresented classes. This is particularly problematic
in safety-critical applications, such as autonomous driving, where
misclassifying rare traffic signs could result in hazardous outcomes.
Ensuring balanced performance across all classes is therefore essen-
tial for building robust and reliable traffic sign recognition systems.

3.2.1 Augmentation Methods. We develop a data augmentation
pipeline that employs the following four methods to simulate real-
world variations:

¢ Rotation: Randomly rotates images within a range of [-15°, 15°]
to account for camera tilts and vehicle angles.

o Translation: Shifts images horizontally and vertically by up to
5 pixels to simulate sign displacement within the frame.

e Shearing: Applies a horizontal shear transformation using a
random factor from [—-0.2,0.2] to simulate perspective distor-
tions caused by angled views.

o Gamma Correction: Adjusts image brightness and contrast us-
ing a gamma value randomly sampled from the range [0.4, 1.5],
simulating varying lighting conditions.

Figure 2 illustrates the effects of our data augmentation methods
applied to a preprocessed image of the “Vehicles over 3.5 tons
prohibited” traffic sign. The original image, resized to 32x32 pixels
and converted to grayscale (as shown in Figure 1), is used as the
input for these augmentations to demonstrate their impact.

3.2.2 Augmentation Strategy. We develop a tiered data augmen-
tation strategy that applies augmentation proportionally to each
class’s sample count:

o Classes with <300 images: we apply three augmentation methods
per image, quadrupling the class size.

o Classes with 301-450 images: we apply two augmentation meth-
ods per image, tripling the class size.

o Classes with 451-780 images: we apply one augmentation meth-
ods per image, doubling the class size.

o Classes with 781-1500 images: we augment 30% of the images
with one method, increasing the class size.

o Classes with > 1500 images: no augmentation is applied, as these
classes are already well represented in the dataset.

3.2.3 Results. Our class-aware data augmentation increases the
total dataset size from 39,209 to 61,726, representing a 57.4% in-
crease. More importantly, it reduces the class imbalance ratio from

TinyML-Based Traffic Sign Recognition on MCUs

Rotation
1 1

Translation
1 I

10 4

20

30 -

] i
10 20
Gamma Correction
1 I

Figure 2: The used data augmentation methods.

10.7X to 2.7X, corresponding to an approximately 75% reduction
in disparity between the largest and smallest classes. The most
underrepresented classes grow from 210 samples to 840 samples,
ensuring adequate representation during training. Figure 3 illus-
trates the original class distribution and augmentation targets for
each class. The blue column indicates +300%, the orange column
+200%, the green column +100%, and the red column +30%.

3.3 Architecture

To explore the architectural trade-offs, we develop two variants of
AykoNet, each optimized for different objectives:

o AykoNet-Lite: Prioritizes minimal model size and fast inference
for real-time applications.

o AykoNet-Pro: Prioritizes classification accuracy while main-
taining deployability on MCUs.

3.3.1 AykoNet-Lite. We design AykoNet-Lite with aggressive size
and speed optimizations for real-time MCU deployment. Table 1
shows AykoNet-Lite’s complete architecture.

The designed model follows a power-of-two channel progression
of 8—16—32—64—128. This scaling strategy optimizes memory
access patterns on the Raspberry Pi Pico’s ARM Cortex-M0+ archi-
tecture, enabling efficient memory alignment for 32-bit memory
bus access, simplified address calculation during convolution oper-
ations, and improved vectorization efficiency in TensorFlow Lite
Micro kernels [3]. This contrasts with GiordyNet’s irregular chan-
nel progression of 10—50—100, which may result in less efficient
memory utilization. Except for the initial feature extraction layer,
all convolutional layers employ depthwise separable convolutions
to reduce computational cost and parameter count. This approach
differs from GiordyNet, which does not incorporate any depthwise

2000

1500

Number of Training Images
g
S

1000

Figure 3: Class distribution after augmentation.

operations, and from MobileNet, which uses depthwise separable
convolutions even in its initial feature extraction. The classifier
consists only of GlobalAveragePooling2D followed by dropout and
a single dense output layer. This minimalist design avoids the com-
putational overhead of intermediate dense layers while preserving
sufficient representational capacity for traffic sign classification.

3.3.2 AykoNet-Pro. While AykoNet-Lite is designed for minimal
resource usage, AykoNet-Pro prioritizes higher classification accu-
racy within feasible deployment constraints.

The model uses 16—32—64—128—128 channels, starting with
a higher initial capacity compared to AykoNet-Lite (16 vs 8) and
maintaining maximum channels in the final block. This is designed
to provide richer feature representations throughout the network.
In contrast to AykoNet-Lite, the classifier includes an intermedi-
ate Dense(128) layer with ReLU activation, providing additional
representational capacity for complex feature combinations. This
architectural choice trades a modest increase in size for improved
classification performance.

4 Experimental Setup and Results

To evaluate AykoNet’s performance and validate our design choices,
we benchmark it against three baseline models: MobileNetV1_25
(width multiplier of @=0.25), MobileNetV1_20 (@=0.20), and Gior-
dyNet. We choose them to highlight the trade-offs between the
general-purpose efficiency of MobileNets and the domain-specific
optimization of GiordyNet. We evaluate all the models in terms of
the model size, classification accuracy, and inference latency.

Our experimental pipeline follows the standard TinyML work-
flow. The process begins with model training on Google Colab,
followed by conversion to the TensorFlow Lite format with full
integer quantization. The final models are then deployed on our
target platform, Raspberry Pi Pico, which is based on the RP2040
MCU. It features a dual-core ARM Cortex-M0+ processor running
at 133 MHz, with 264 KB of SRAM and 2 MB of flash memory.

4.1 Evaluation Metrics

4.1.1 Model Size. We measure the post-quantization model size in
kilobytes (KB), representing the final memory footprint required for
deployment. This metric directly impacts the feasibility of deploy-
ment on memory-constrained microcontrollers. Based on the guide-
lines of TensorFlow Lite for MCU, we assume that models exceeding

Table 1: AykoNet-Lite’s body architecture.

Layer Type Output Shape Parameters
Initial Feature Extraction

Conv2D (32, 32, 8) 80
BatchNormalization (32,32, 8) 32
ReLU (32, 32, 8) 0
First Depthwise Separable Block

DepthwiseConv2D (16, 16, 8) 80
BatchNormalization (16, 16, 8) 32
ReLU (16, 16, 8) 0
Conv2D (16, 16, 16) 144
BatchNormalization (16, 16, 16) 64
ReLU (16, 16, 16) 0
Second Depthwise Separable Block
DepthwiseConv2D (8, 8, 16) 160
BatchNormalization (8, 8, 16) 64
ReLU (8, 8, 16) 0
Conv2D (8, 8, 32) 544
BatchNormalization (8, 8,32) 128
ReLU (8, 8,32) 0
Third Depthwise Separable Block
DepthwiseConv2D (4, 4, 32) 320
BatchNormalization (4, 4,32) 128
ReLU (4, 4, 32) 0
Conv2D (4, 4, 64) 2,112
BatchNormalization (4, 4, 64) 256
ReLU (4, 4, 64) 0
Fourth Depthwise Separable Block
DepthwiseConv2D (4, 4, 64) 640
BatchNormalization (4, 4, 64) 256
ReLU (4, 4, 64) 0
Conv2D (4, 4, 128) 8,320
BatchNormalization (4, 4, 128) 512
ReLU (4, 4, 128) 0
Classification Head

GlobalAveragePooling2D (128) 0
Dropout (128) 0
Dense (Softmax) (43) 5,547
Total parameters: 19,419
Trainable parameters: 18,683
Non-trainable parameters: 736

250KB would not fit within the Pico’s deployment constraints, as
this threshold ensures sufficient memory remains available for the
system components [14].

4.1.2 Classification Accuracy. We evaluate classification accuracy
using quantized TensorFlow Lite models with 8-bit integer pre-
cision, as these models are intended for MCU deployment. We
evaluate 1,000 randomly selected images from the official GTSRB
test set (which contains 12,629 images).

4.1.3 Inference Latency. We evaluate the real-time performance
by measuring the inference time of quantized models on the MCU

Aykut Emre Celen, Ran Zhu, and Qing Wang

Figure 4: Experimental setup: the used Raspberry Pi Pico
Zero MCU and the HM01B0 camera.

RP2040 with an HMO01B0 camera. Experiments are conducted in
a static setup, where both the camera and the traffic signs remain
stationary. The camera operates at an exposure rate of 300, and
the distance between the camera and the signs is fixed at 15 cm, as
shown in Figure 4. To ensure consistency, we evaluate all the de-
ployable models using a standardized protocol with 43 test images
from the GTSRB dataset (one per traffic sign class). We record infer-
ence times using Pico’s timers (get_absolute_time()), specifically
measuring the duration of the TensorFlow Lite Micro interpreter’s
Invoke () call. This isolates neural network computation time from
the overhead of preprocessing and post-processing. We sum the
inference times over all 43 images and average them to derive
representative latency metrics.

4.2 Results

We evaluate the model’s performance based on the three key met-
rics listed above: classification accuracy, model size, and inference
latency. The results are summarized in Tables 2-4.

4.2.1 Model Size. We measure model sizes using the file size of
the TensorFlow Lite models as described in Section 4.1.1. We only
report quantized versions, as they represent the deployable models.
Table 2 lists the results.

We can observe that, despite using depthwise separable convolu-
tions for efficiency, MobileNetV1 models have the largest sizes due
to their general-purpose architecture, which is designed for diverse
image classification tasks. These models process RGB inputs (3
channels) and employ 13 convolutional blocks, resulting in a higher
parameter count compared to domain-specific architectures.

MobileNetV1_25 exceeds 300 KB. Although it surpasses the 250
KB threshold recommended in the TFLite Micro repository [14],
it may be deployable since TensorFlow Lite Micro’s tensor arena
requirement (kTensorArenaSize) is typically smaller than the full
model size, as not all model weights need to be cached simultane-
ously during inference. However, following the deployment guide-
lines from the TFLite Micro repository [14], we consider models

Table 2: Model size.

Model Size (KB)

MobileNetV1_25-int8 307.59
MobileNetV1_20-int8 217.79

GiordyNet-int8 106.87
AykoNet-Lite-int8 36.80
AykoNet-Pro-int8 80.18

TinyML-Based Traffic Sign Recognition on MCUs

Table 3: Classification accuracy.

Model Accuracy
MobileNetV1_25-int8 87.50%
MobileNetV1_20-int8 79.80%

GiordyNet-int8 95.50%
AykoNet-Lite-int8 94.60%
AykoNet-Pro-int8 95.90%

exceeding 250 KB as incompatible with Pico’s memory constraints.
Reducing the width multiplier & from 0.25 to 0.20 yields a 29.2%
size reduction (from 307.59 KB to 217.79 KB), highlighting the effec-
tiveness of width multipliers for compressing and scaling models.
GiordyNet (106.87 KB) and AykoNet-Pro (80.18 KB) achieve
similar model sizes, indicating similar architectural complexity.
AykoNet-Lite (36.8 KB) represents an aggressive minimization ap-
proach, achieving a 54% reduction compared to AykoNet-Pro.

4.2.2 Classification Accuracy. We evaluate the quantized Tensor-
Flow Lite models on the test set, as described in Section 4.1.2. The
results are presented in Table 3.

MobileNetV1_25 achieves an accuracy of 87.50% despite its general-
purpose design, demonstrating adaptability to domain-specific clas-
sification tasks. Reducing the width multiplier & from 0.25 to 0.20
results in an 8.8% drop in accuracy (from 87.50% to 79.80%) in Mo-
bileNetV1_20. Compared to the corresponding 29.2% reduction in
model size (from 307.59 KB to 217.79 KB), the accuracy loss is dis-
proportionately smaller, suggesting that the width multiplier « is
an effective mechanism for balancing model efficiency and per-
formance. However, since MobileNetV1_20 achieves less than 80%
accuracy, it is considered unsuitable for traffic sign recognition in
safety-critical autonomous systems.

AykoNet-Pro achieves the highest accuracy at 95.90%, closely
matching the performance of GiordyNet (95.50%). Both models bene-
fit from domain-specific architectures and preprocessing techniques.
AykoNet-Lite demonstrates exceptional efficiency, achieving 94.60%
accuracy while requiring only 36.8 KB of storage. Compared to
GiordyNet, AykoNet-Lite is approximately one-third the size while
sacrificing only 0.9 percentage points in accuracy, validating the
effectiveness of our architectural optimizations.

In addition to comparisons with other models, the confusion
matrices of AykoNet-Lite (Figure 5) and AykoNet-Pro (Figure 6)
illustrate their performance across 43 traffic sign classes. Darker
blue squares along the diagonal represent correct predictions, while
lighter off-diagonal squares indicate misclassifications. Both models
show difficulty with classes 19, 21, 27, 30, 37, and 40, suggesting
that these specific traffic sign types are inherently more challenging
to classify. This may also be due to the lower number of training
samples for these classes, as shown by the dataset imbalance in
Figure 3. In contrast, classes such as 13, 16, 32, 33, 35, 39, and
42 consistently exhibit dark diagonal squares in both matrices,
indicating they are reliably well-classified regardless of the model
architecture.

4.2.3 Inference Latency. We measure the inference time of the
models on the Raspberry Pi Pico MCU as described in Section 4.1.3.
We exclude MobileNetV1 25-int8 as its size exceeds the 250 KB
threshold (see Section 4.1.1). Table 4 shows the latency results.

True Label

BEEBRY R BRI BN RN REBERE SR G REERFEvo~wouswnro

10

OMNMTOer PO o NN A3RANRINARRRAHNBIBERBATIY
Predicted Label

Figure 5: Confusion matrix of AykoNet-Lite (Colors indicate

the prediction count for each traffic sign type).

0

1

2 60
3

a

5

6

7

8

9

True Label
S

10

BREEBBYRRRBREBRNEBYR

ST e g G NS S RNNOINRREABENRIREEBY Y
L

Figure 6: Confusion matrix of AykoNet-Pro (Colors indicate
the prediction count for each traffic sign type).

GiordyNet exhibits the highest inference latency (204.08 ms),
primarily attributed to its exclusive use of standard convolution
layers instead of depthwise separable convolutions. Furthermore,
its irregular channel progression of 10—50—100 likely leads to
misaligned memory access patterns on the 32-bit ARM Cortex-M0+
processor. The combination of computationally intensive standard
convolutions and suboptimal memory access patterns contributes
to its substantial latency.

MobileNetV1_20 achieves efficient inference (77.29 ms) despite
processing RGB images (3 channels) and having a model size of

Table 4: Inference latency.

Model Time (ms)
MobileNetV1_20-int8 77.29
GiordyNet-int8 204.08
AykoNet-Lite-int8 55.34
AykoNet-Pro-int8 87.13

217.79 KB. Its exclusive use of depthwise separable convolutions
throughout the network, combined with optimizations specifically
designed for TensorFlow Lite Micro’s interpreter [3, 8], demon-
strates the effectiveness of hardware-aware architectural design for
embedded deployment on resource-constrained microcontrollers.
AykoNet-Pro records an inference time of 87.13 ms, demonstrat-
ing a 12.7% increase compared to MobileNetV1_20, despite process-
ing grayscale images. This performance overhead is attributed to
the inclusion of standard convolution layers in the initial feature ex-
traction, which introduces greater computational complexity than
a purely depthwise separable approach. AykoNet-Lite delivers the
fastest inference time (55.34 ms), validating its lightweight design.
Although it also employs standard convolutions in the initial fea-
ture extraction, its minimalist classification head and reduced initial
channel capacity compared to AykoNet-Pro (8 vs 16) significantly
decrease the total computational operations, resulting in optimal
inference performance for the target hardware platform.

5 Discussions

By developing and evaluating AykoNet, we identified key principles
for effective embedded machine learning deployment, exploring
the architectural trade-offs that influence model size, classification
accuracy, and inference latency. Our results reveal distinct perfor-
mance rankings across these metrics: AykoNet-Pro achieves the
highest accuracy (95.90%), while AykoNet-Lite delivers the small-
est model size (36.8 KB) and the fastest inference time (55.34 ms).
Critically, no single model dominates all metrics, highlighting the
fundamental trade-offs in TinyML and real-world deployment.

The evaluation of AykoNet variants against MobileNetV1_20
underscores the advantages of domain-specific preprocessing and
architecture design in achieving high classification accuracy. While
MobileNetV1_20 offers a deployable model size and applicable in-
ference latency for real-time systems, its sub-80% accuracy renders
it unsuitable for safety-critical applications. AykoNet addresses this
gap by employing a targeted domain-specific approach, achieving
the high accuracy required for robust autonomous systems.

The comparative analysis between AykoNet variants and Gior-
dyNet highlights the distinct advantages of depthwise separable
convolution layers and class-aware data augmentation. Although
GiordyNet achieves strong classification accuracy, its reliance on
computationally intensive standard convolutions results in prob-
lematic inference latency for real-time applications. AykoNet over-
comes this limitation by integrating efficient depthwise separa-
ble convolutions. To maintain high classification accuracy despite
this optimization, we apply class-aware data augmentation on the
dataset, which led AykoNet-Pro to achieve higher accuracy than
GiordyNet while being smaller and faster.

Aykut Emre Celen, Ran Zhu, and Qing Wang

Our experimental design has several limitations. To address class
imbalance, we implemented a data augmentation pipeline without
exploring undersampling strategies, which could have provided use-
ful comparative insights. Additionally, the specific contributions of
individual design decisions—such as grayscale conversion and data
augmentation—are not quantified, as we did not evaluate AykoNet
variants without these components. Lastly, both the camera and
traffic signs remain stationary during the experiments. This setup
does not fully reflect real-world conditions, where the system must
operate on moving vehicles. The primary reason for this limita-
tion is the HMO01B0 camera used in our setup, which has a very
low resolution of 160x120 pixels and poor image quality during
motion. When the camera moves, the resulting images become
significantly blurred due to its limited dynamic range and slow
shutter response, making it unsuitable for capturing clear frames
in dynamic scenarios.

6 Conclusion

In this work, we have studied how to design an effective TinyML
model for real-time traffic sign recognition on MCUs. We proposed
a new network architecture called AykoNet with two variants: one
prioritizing classification accuracy (AykoNet-Pro) and one priori-
tizing model size and inference latency (AykoNet-Lite). We investi-
gated several key design decisions that led to an effective model. We
compared AykoNet with existing architectures. The results demon-
strated AykoNet’s effectiveness, highlighting the impact of domain-
specific preprocessing, class-aware data augmentation, depthwise
separable convolutions, and hardware optimizations. For future
work, we plan to integrate AykoNet into an autonomous naviga-
tion system with camera integration, enabling real-time recognition
of traffic signs and autonomous vehicle response.

References

[1] Michael et al. Breiter. 2016. Video-Based ITS — State of the Art. Transp Res
Procedia (2016).

[2] Tejas Chaudhari, Ashish Wale, Amit Joshi, and Suraj Sawant. 2020. Traffic Sign
Recognition Using Small-Scale CNN.

[3] Robert et al. David. 2020. TensorFlow Lite Micro: Embedded ML on TinyML
Systems.

[4] Esma Dilek and Murat Dener. 2023. Computer Vision in ITS: A Survey. Sensors
(2023).

[5] Chunhui Du, Shenglan Su, and Cheng et al. Lin. 2025. A lightweight network
for traffic sign detection via multiple scale context awareness. Sci Rep (2025).

[6] Marco Giordano. 2020. Traffic Sign Recognition, CNN on Microcontrollers.

[7] Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc Schlipsing, and Chris-
tian Igel. 2013. Detection of Traffic Signs: GTSRB Benchmark. In IJCNN.

[8] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Wei-
jun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mo-
bileNets: Efficient Convolutional Neural Networks for Mobile Vision Applica-
tions. arXiv:1704.04861 (2017).

[9] Forrest N. et al. Iandola. 2016. SqueezeNet: AlexNet-level accuracy with 50x
fewer params.

[10] Jonghoon Jin, Aysegul Dundar, and Eugenio Culurciello. 2015. Flattened CNNs
for Feedforward Acceleration.

[11] Ida Syafiza Binti Md Isa, Choy Ja Yeong, and Nur Latif Azyze. 2022. Real-time
traffic sign detection on Raspberry Pi.

[12] Girish Kumar et al. N G. 2025. Real-time traffic sign recognition for autonomous
vehicles. Multimedia Tools Appl (2025).

[13] A. et al. Radha Rani. 2024. Traffic sign detection with haze removal. e-Prime
(2024).

[14] Yuan Tang. [n.d.]. TensorFlow Lite for Microcontrollers.

[15] Min Wang, Baoyuan Liu, and Hassan Foroosh. 2017. Design of Efficient Conv
Layers with Intra-channel Conv.

[16] Pete Warden and Daniel Situnayake. 2019. TinyML: Machine Learning with
TensorFlow Lite on Arduino and Ultra-Low-Power Microcontrollers.

	Abstract
	1 Introduction
	2 Related Work
	3 AykoNet
	3.1 Data Preprocessing
	3.2 Class-Aware Data Augmentation
	3.3 Architecture

	4 Experimental Setup and Results
	4.1 Evaluation Metrics
	4.2 Results

	5 Discussions
	6 Conclusion
	References

