Edge-Oriented Orchestration of Energy Services Using
Graph-Driven Swarm Intelligence

Liana Toderean
liana.toderean@cs.utcluj.ro
Technical University of Cluj-Napoca
Romania

Stefania Dumbrava
stefania.dumbrava@ensiie.fr
ENSIIE & SAMOVAR
France

Abstract

As smart grids increasingly depend on IoT devices and distributed
energy management, they require decentralized, low-latency or-
chestration of energy services. We address this with a unified frame-
work for edge-fog-cloud infrastructures tailored to smart energy
systems. It features a graph-based data model that captures infras-
tructure and workload, enabling efficient topology exploration and
task placement. Leveraging this model, a swarm-based heuristic
algorithm handles task offloading in a resource-aware, latency-
sensitive manner. Our framework ensures data interoperability
via energy data space compliance and guarantees traceability us-
ing blockchain-based workload notarization. We validate our ap-
proach with a real-world KubeEdge deployment, demonstrating
zero-downtime service migration under dynamic workloads while
maintaining service continuity.

CCS Concepts

+ Computing methodologies — Distributed artificial intelli-
gence; » Information systems — Graph-based database mod-
els.

Keywords

Edge Computing, Grid Orchestration, ML Tasks, Graph Data, Of-
floading, Swarm Intelligence, Decentralized Energy Management

1 Introduction

The Internet of Things (IoT) is transforming smart grids and energy
services by enabling real-time monitoring and decentralized energy
management using both traditional control and experimental ML
approaches. However, these services face challenges due to the
continuously growing volume of data generated by IoT devices and
transmitted across the network to centralized cloud infrastructures.
The requirements for low latency, real-time responsiveness, and
localized decision-making in energy systems call for new architec-
tures that can process data closer to the source, minimizing network
congestion and improving operational efficiency [22].

In this context, modern edge-fog-cloud infrastructures allow
efficient distributed data processing along the entire computing
continuum, spanning from resource-constrained edge devices to
powerful centralized cloud data centers. Thus, identifying the opti-
mal placement of tasks across available computing nodes is essential

Dragos Lazea
dragos.Jazea@cs.utcluj.ro
Technical University of Cluj-Napoca
Romania

Anca Hangan
anca.hangan@cs.utcluj.ro
Technical University of Cluj-Napoca
Romania

Vasile Ofrim
vasile.ofrim@cs.utcluj.ro
Technical University of Cluj-Napoca
Romania

Tudor Cioara
tudor.cioara@cs.utcluj.ro
Technical University of Cluj-Napoca
Romania

to reduce latency, balance computational load, and maximize re-
source efficiency across all layers. This becomes even more critical
as resource-intensive tasks, such as Tiny-ML inference, become
increasingly common on edge devices, requiring careful consider-
ation of resource constraints, network conditions, and workload
characteristics. Furthermore, in smart grid, critical services are
safeguarding the operation of the infrastructure, therefore, their
execution is not only constrained by the fast data availability from
the meter but also by energy grid constraints and stringent time ex-
ecution constraints. For example, congestion management services
Al models forecast the available generation and consumption in
a local microgrid; therefore, in their orchestration at the edge, we
must go beyond the computational and data network factors and
consider additionally electricity network-specific factors (e.g., real-
time production vs. consumption balance, active vs reactive power,
etc.) [2]. In case of congestion, without quick balancing, the grid
can experience dangerous fluctuations and, in extreme cases, power
outages. However, to our knowledge, nowadays orchestration plat-
forms are not able to consider energy grid-specific factors in energy
services offloading at the edge decision-making, representing a
significant gap for the roll-up of Al-driven energy services in the
smart grid. Furthermore, Federated Al services represent another
important category of energy-related services, enabling collabora-
tive and privacy-preserving training of machine learning models
across the smart grid [21]. In such cases, executing the task on
a computing node located far from either the data source or the
target destination can introduce higher communication latency and
negatively impact the responsiveness and overall efficiency of grid
operations [19]. Although federated Al services in energy systems
often consider computational topology, they typically overlook the
physical structure of the grid, an underexplored but critical factor
for informed decision-making.

To address the above-identified gaps, several research questions
need to be addressed.

@ How can energy service tasks be efficiently offloaded to edge
computing nodes in a way that meets resource constraints, minimizes
communication latency, and preserves data locality, while additionally
considering constraints related to grid topology, critical energy services
requirements, and energy locality? Finding an efficient placement of
tasks on distributed computing nodes in edge-cloud infrastructures
is a challenging problem that has been extensively studied from
various perspectives in the literature [1, 7, 14, 19]. For example, [1]

jointly address offloading, resource allocation, and scheduling to
meet IoT deadlines in collaborative edge environments. In[7], the
authors propose a multi-task offloading and resource allocation
scheme that accounts for dependencies and resource constraints
in a satellite IoT use case. The work in [14] introduces a heuris-
tic scheduler focused on reducing the deadline miss ratio (DMR)
by prioritizing deadlines and network flows. A proximity-based
placement method is proposed in [19], using a multistage greedy
algorithm to assign tasks near their data sources. Heuristic meth-
ods are increasingly favored due to the impracticality of exhaustive
search in large systems [13], though even these may suffer from
high computational overhead when handling large numbers of tasks
and nodes [16]. In this regard, optimization algorithms capable of
handling multi-objective formulations and complex constraint defi-
nitions are essential for effective and adaptive task placement [15].

(2) What data model can effectively support efficient topology
exploration and offloading decision making? Relational databases
often face performance limitations when modeling topology and
connectivity-centric data. In contrast, graph databases offer scal-
able and flexible querying for highly interconnected data [6, 20].
Several works have explored modeling network topologies using
graph databases [4, 12, 20]. In [20], the authors integrate the Net-
work Markup Language (NML) into a graph database to enhance
SDN network state and demonstrate efficient path queries. GOX [4]
extends this by modeling SDN topologies with Neo4j, achieving
improved performance on synthetic and real-world networks. Simi-
larly, the work in [12] presents a graph-based system for managing
topology and inventory in dynamic cloud networks to support
automated management tasks.

@ How can data interoperability and movement notarization for
energy services be ensured to enable traceable and efficient offload-
ing toward the edge? Data interoperability is an essential require-
ment for energy services as they operate with heterogeneous data
sources and they must understand and exchange data with other ser-
vices [18]. Standardized data exchanges [3, 17] facilitated by data
spaces frameworks provide interoperability for energy services
through semantic models, identity management, and policies [8].
Data space connector acts as a trusted interface for participants to
exchange data in a secure and controlled manner. Blockchain tech-
nology provides tamper-proof tracking mechanisms that enable
transparency and traceability [10]. It serves as a platform for nota-
rizing task offloading and monitoring resource usage in a secure
and verifiable manner [23]. However, to maintain interoperability
during service migration, data space connectors must be actively
employed between services to preserve secure and policy-compliant
connections. Additionally, by tokenizing tasks and leveraging smart
contracts, the placement and execution of offloaded services should
be automatically traced whenever a task is relocated, ensuring
accountability and trust.

Motivated by the above, we explore how to efficiently offload
energy service-related tasks to computing nodes in a heterogeneous
edge-fog—cloud system integrated with the smart energy grid in-
frastructure. A graph-based data model is defined to represent both
computational infrastructure and workload tasks, facilitating the
network topology exploration. It supports the execution of heuristic
optimization algorithms by effectively defining and constraining
the computational search space and ensuring that the algorithm

Toderean et al.

_ Cloud Node

Open Service
Catalogue

C

Edge Node H ! Edge Node
Y —— [e—
i i
i i

Connector | ' ! Connector |
sa) lar A)
@ |2 ECRI
| | | |—
) CEE = /

Figure 1: Orchestration framework architecture

operates only on data relevant for generating feasible offloading
solutions. It enables orchestration with computational interoper-
ability, while data space compliance and blockchain tracing ensure
data interoperability.

This work presents three key contributions: (a) the design of
an edge-oriented orchestration framework for delivering energy
services to edge nodes in the smart grid, while ensuring service
continuity, data interoperability, and availability across distributed
resources; (b) a graph-based model that unifies the physical infras-
tructure, such as computing nodes and IoT smart meters, and the
workload consisting of energy services’ tasks, enabling efficient
graph querying for network exploration and data reduction; and
(c) an edge-aware, heuristic-based optimization technique that ef-
ficiently places energy-related tasks across heterogeneous edge
computing nodes, optimizing for latency, energy consumption, and
resource constraints to improve service delivery.

2 Orchestration and Data Management

This section outlines the orchestration framework and data manage-
ment mechanisms that support efficient orchestration and trustwor-
thy execution of energy services. A unified graph-based model inte-
grates infrastructure and workload information to enable scalable
task placement via in-graph filtering and swarm-based optimization.
Data interoperability is ensured using data space standards, while
blockchain-based tracing guarantees transparency and auditable
task execution across the edge-fog—-cloud continuum.

The orchestration framework architecture is depicted in Figure 1.
It is designed to support the deployment and management of energy
services across a dynamic, distributed cloud-edge continuum whilst
ensuring service availability and preserving the connection among
them. The connection between services is managed through data
space connectors, and the services’ metadata is exposed through a
federated catalogue that enables the orchestration service to access
it. The framework enhances the underlying container orchestra-
tion platform by introducing a monitoring layer that observes the
status of nodes and listens for specific events regarding the compu-
tational resources on nodes or network conditions. The scheduling
component triggers the swarm-based optimization algorithm that

Edge-Oriented Orchestration of Energy Services Using Graph-Driven Swarm Intelligence

generates a new task scheduling plan that is aligned with the appli-
cation requirements in terms of computational resources, network
conditions, and geographical considerations. The container orches-
tration platform handles the actual service migration, according
to the generated schedule with the new state of the system be-
ing updated in the graph database. It continues to monitor, collect
and aggregate metrics from nodes and their workload, providing
real-time insights to the orchestration service.

2.1 Graph Data Model and Task Placement

Graph Data Model. We define a graph data model that provides
a unified representation of both the infrastructure and the work-
load, as depicted in Figure 2. The model captures details about
computational resources—both available and in use—on each node,
along with the connectivity between nodes. Links include attributes
such as latency and available bandwidth, enabling a comprehensive
view of the system’s state. The workload is associated with the
infrastructure by defining data dependencies—specifically, the IoT
device (e.g., a smart meter) that generates the input data required
by the task, and the computing node where the task’s output is
intended to be delivered. Furthermore, tasks assigned to execution
nodes as a result of the heuristic-based optimization are explicitly
linked to those nodes within the model by creating EXECUTES_ON
relations. This relation might not always be present, as some tasks
may remain unassigned.

This model enables efficient topology exploration and path query-
ing when identifying suitable execution nodes for task placement,
while also supporting preliminary data filtering before applying
the optimization algorithm. This is particularly important in large-
scale infrastructures where loading the entire topology in the opti-
mization engine is neither practical, nor efficient. To this aim, we
implement a filtering mechanism that, for each unassigned task,
reduces the dataset by loading into the optimization module only
those nodes that: (1) have a path to the IoT device generating the
task’s input data, @ are connected—either directly or indirectly—to
the node where the task’s output should be delivered, and @ have
enough available resources to accommodate the task. Latency and
average bandwidth for input/output paths are computed via graph
queries and stored with each node in the filtered set. This allows
the optimization engine to select nodes from a pre-filtered, feasible
subset, reducing search space and computational cost.

Formal Problem Definition. We formulate the task-to-node
mapping as a multi-objective optimization problem. Let the edge-
cloud infrastructure be I = DUEUFUC, where D = {dy,da, ...,dn,}
denotes the set of IoT devices (e.g., smart meters), E = {ey, ey, . . ., eNe}
is the set of edge computing nodes, F = {fi, fa..... fn, } is the set
of fog computing nodes, and C = {cy,ca,...,cn,} is the set of
cloud computing nodes. Given a set of tasks T = {t1,12,..., N, },
the objective is to assign each task t; € T to a computing node
nj € EUFUC such that multiple objectives—minimizing execution
time, communication latency, and energy consumption—are opti-
mized while satisfying the resource and connectivity constraints of
the infrastructure.

Each task t; € T is characterized by a set of parameters: C;, rep-
resenting the required CPU cycles; Sl?”, the input data size; S;’“t ,
the output data size; and Sfxe, the executable size. Similarly, each

no_required_cycles: INTEGER
exe_size: FLOAT
input_size: INTEGER

N
/ \
Task
// GETS_DATA_FROM

measuring_range: LIST<FLOAT>,

output_size: INTEGER

SENDS_OUTPUT_TO \

EXECUTES_ON
CONNECTED_TO

compute_layer: STRING

"CONNECTED_TO"
cpu_frequnecy: FLOAT - -

cpu_availability: FLOAT -
latency: INTEGER

available_bandwidth: INTEGER

available_ram: INTEGER
sampling_rate: FLOAT

available_storage: INTEGER
used_cpu: FLOAT
used_ram: INTEGER

used_storage: INTEGER

Figure 2: Unified graph model

computing node nj € EU F U C is defined by its CPU frequency,
freq;, and its available resources (i.e., the difference between the
total amount of resources at the node and the amount of resources
already used), including R]CP U for CPU availability, R?AM for avail-
storage

able RAM memory, and Rj
resources at each node are updated after assigning a task by sub-
tracting the resources consumed by that task from the current
available resources of the node. In addition to its available and
in-use resources, each node n; is also characterized by a coefficient
k;, which reflects the CPU architecture—dependent energy con-
sumption. This coefficient is used to compute the energy consumed
during the execution of tasks on n;. Each task-candidate node pair
(ti,nj) is associated with two communication paths: Pl?';?, the path

for available storage. The available

from the data source of task ¢; to the candidate execution node n;,
and Plf’j”t , the path from n; to the node where the output of #; must
be delivered. Each path has an associated total latency and average
available bandwidth: LZ’ and BV\/l.ij’1 for the input path, and Ll.oj?” and
BWl.‘;.”t for the output path. These attributes are computed during
the in-database filtering step performed.

The goal is to compute a task-to-node mapping that minimizes
the average cost across all assignments, where the cost cost;; of
mapping task #; to node n; integrates execution time, communica-
tion delay, and energy consumption. This optimization considers
only valid assignments, i.e., those that respect node resource con-
straints, while aiming to improve overall system efficiency.

exec;j = friiqj (1)
Szl:n in Slput out
commjj = W +L;7 + Bwout +Lj; 2)
ij ij
energy;; = kj - C; - (freqj)2 (3)

COStjj = Wex - €X€Cjj + Weo - COMM;j + Wep * ENEIGY;; 4)

Here, exec;; and energy;; are, respectively, the execution time
and energy consumed when running task t; on node n, and comm;
is the communication time along Pl’j" and Pl.‘;?” .

Swarm-based Optimization for Task Offloading. We ad-
dress the task-to-node assignment problem using a custom Ant
Colony Optimization (ACO) algorithm [9], due to its ability to ef-
fectively handle discrete problems, incorporate custom heuristics,

256 bits

- BTN - .

1 bit 160'bits 5 bits 90 bits
(FTINFT) (mint, contract (CPU, RAM, HDD, (Resource Requirments
address) Bandwidth, Latency) Service metadata)

Figure 3: Structure of a Task Token

and maintain a dynamic balance between exploration and exploita-
tion through pheromone updates. Unlike Genetic Algorithms [11],
which may require complex encoding of problem variables and risk
premature convergence, or Simulated Annealing [5], which con-
verges slowly raising scalability issues and struggles with defining
constraints, ACO efficiently integrates constraints and adapts to
dynamic environments with minimal overhead. Its scalable design
and memory-like pheromone mechanism make it a suitable choice
for dynamic, resource-constrained mapping scenarios, such as the
assigning computing tasks to executing nodes problem.

As part of our approach, each artificial ant builds a solution
by probabilistically selecting execution nodes for tasks, guided by
pheromone trails and a heuristic favoring high bandwidth and low

WiniBwout

L Ly

L;:;‘+L§’]?”
are considered. Pheromone values are updated after each itera-
tion to reinforce good solutions while enabling exploration. Over
multiple iterations, the algorithm converges to a mapping that min-
imizes execution, communication, and energy costs. Algorithm 1
summarizes our approach.

latency paths: . Only resource-respecting mappings

2.2 Data Interoperability and Task Tracing

Data interoperability is essential for digital energy services, en-
abling the integration of diverse systems and devices. Effective
coordination of multiple stakeholders (grid operators, market plat-
forms, regulatory entities) requires data exchange between services,
IoT devices, and external forecasting systems. Processing data from

Algorithm 1 ACO for Task-to-Node Assignment

Require: Tasks T, candidate node map O, cost matrix cost;j, ACO
params (a, f, p, 70), grid topology G
Ensure: Mapping M : T — N minimizing average cost
1: Initialize pheromone matrix 7;; < 7o for all valid (¢;, n;)
2. Compute heuristic n;; < n(BW;j, L;j, G)
3: for each iteration do
4. for each ant do

5 Initialize S « 0
6: for each task t; € T do
a B
ey _ Tij '7[]
7: Compute probabilities: p;j = ——>—¢
Dkevalid Ti Mg
8: Select node n; from O(t;) based on p;;
9: Update R]CPU, RfAM, R;tomge, S —SU{(ti,nj)}
10: end for
1 Compute total cost of S: ﬁ Z(t,—,nj)es costjj
12: Update best solution if needed

13: end for

14: Evaporate pheromones: 7j; < (1 - p) - 7;j
15: Reinforce pheromones using best solution
16: end for

17: return M

Toderean et al.

these heterogeneous systems is important for real-time decision-
making. Data must be shared reliably and with controlled access.
Beyond data interoperability, edge deployment of energy services
requires a decentralized mechanism to ensure transparency and
traceability of task location and duration.

Data space standards (defined by IDSA) offer a framework for
secure data exchanges through data connectors that enable stan-
dardized, policy-enforced communication. Also, they support inte-
gration with a federated service catalog enabling easier discovery.
Some of the requirements of energy services include reliable, se-
cure communication and interoperability. The connector is used for
communication between services as well as by the orchestrator to
discover metadata exposed through the service catalog, information
that guides the orchestration process. The energy services often
act as both consumers and producers of information for other ser-
vices. Services that will share data through the connector define an
asset that describes the data it intends to share. This asset includes
metadata (i.e., description of the exposed data), access methods (i.e.,
push- or pull-based), usage, and policy constraints. By defining the
assets and access policies, the data producers have a standardized
way to share their data whilst maintaining control over it and en-
suring policy enforcement. When another service seeks access to
this data, it first discovers the asset using the federated catalog
and then initiates a contract negotiation process. This negotiation
part ensures that both parties are authorized and all policies and
enforcements are respected and then a contract agreement will be
generated that manages the transfer. This way, data consumers can
have controlled access according to their usage rights to data from
multiple providers that it is ensured to be data space compliant.

The task representation on the blockchain platform is made
through a multi-type token that enables efficient single and batch
transfers. The token id structure can be used to incorporate meta-
data about the task, making it traceable and verifiable on chain.
An example of the id structure is presented in Figure 3 where the
first bit is used to indicate the token type. The fungible tokens (FT)
are used to automate payments for the period that the task was
running on a resource, whilst the non-fungible tokens (NFT) are the
ones representing the tasks. For NFTs, the remaining bits encode
the mint address (i.e., the requesting entity or contract), required
resources, resource limits (for selected types), and task metadata
such as location, linked services, or ownership.

Smart contracts manage the interaction of edge nodes and tasks
on chain. Whenever a service is deployed, a token is minted to
represent that running task. The task smart contract ensures that
the tokens have a valid structure and only authorized parties are
able to mint them. The token is sent to the smart contract that repre-
sents the edge node where the service is deployed. The node tracks
resource usage by the task using information stored in the received
NFT token. Based on that, it can enforce automatic payment for
resource utilization (depending on the usage policies) before releas-
ing the token. This prevents the task from being relocated before
the commitments are fulfilled. The token is transferred to another
edge node when the service is relocated and is destroyed when the
service stops, as shown in Figure 4. This ensures traceability and
enables the service and infrastructure providers to track, monitor,
and enforce automated payment for the resource usage.

Edge-Oriented Orchestration of Energy Services Using Graph-Driven Swarm Intelligence

3 Preliminary Solution Validation

Container
Orchestration
Platform

1
Task start
e P ————
alert triggered Register new
task

Task
Contract

Node
Contract

Event Listener|
Component

: Task starts its :execulinn .
'

| '
'

'

'

Process task |
(mint token) |
| Starttracing |

task execution |

'

! —W;ﬁ:;;?;d Initiate task
N deletion

'

'

'

'

'

'

\

Task finishes its :execulion

Process task !
and burn token !

Handle

Figure 4: Blockchain task tracking flow

We validate our solution through a complete orchestration flow,
starting from a Neo4j model of the edge-cloud infrastructure, which
feeds an ACO engine for efficient task-to-node mapping and op-
tional remapping. Placement decisions update the graph and are
applied on a KubeEdge testbed in a distributed energy scenario,
demonstrating effective handling of dynamic workloads (Table 2).
To assess scalability beyond the testbed’s scale and heterogeneity,
we generate synthetic infrastructures with varied node types and
task profiles, validating both the optimizer and its integration with
Neo4j. Next, we demonstrate the framework’s ability to manage
dynamic workloads on physical infrastructure.

A machine learning-based energy management application is
deployed via the Open Service Catalogue, comprising four subser-
vices: (1) Energy Balancer, which coordinates energy consumption
and production by processing real-time and forecasted data; (2)
Photovoltaic Manager, which supplies real-time solar data to the
Balancer; (3) Green Energy Forecasting, which uses weather data to
predict solar output; and (4) Load Forecasting, that predicts energy
consumption based on historical data. They are initially distributed
across the infrastructure based on resource availability and prox-
imity to data sources. Each is deployed along with its own Eclipse
Dataspace Connector (EDC) to facilitate communication, adopting
pull-based transfers for data requests (the Energy Balancer pulls
from the Photovoltaic Manager) and push-based transfers for up-
dates (the Green Energy and Load Forecasting services push to the
Energy Balancer). EDC enforces a contract-based data exchange
mechanism, where data sharing is allowed only between authorized
participants under usage policies. These contracts persist beyond
service or connector migrations, thus ensuring the continuity of
data exchange regardless of deployment changes.

Table 1: Testbed Infrastructure Configuration

Node Type CPU RAM
Cloud Node 15-7400 (4 cores, 3.0 GHz) 16 GB
Edge Node 1 13-7100U (2 cores, 2.4 GHz) 8 GB
Edge Node 2 15-5200U (2 cores, 2.2 GHz) 6 GB
Edge Node 3 15-5200U (2 cores, 2.2 GHz) 8 GB

Table 2: Gas consumption for token transactions

Transaction Types Gas consumption (gas units)

Mint 144373
Transfer 56072
Burn 29175

For the Load Forecasting subservice we considered the trans-
former machine learning model described in [2]. The model is
trained on historical energy consumption data, measured in kilowatt-
hours (kWh), aggregated at hourly intervals. For each prediction,
it uses the hourly energy consumption from the previous 7 days
(168 values) as input and forecasts the hourly energy consumption
for the next day (24 values). A data collector service gathers data
from energy meters, performs the aggregation and stores the hourly
energy values in a database. Considering this, the Load Forecasting
service placement must be close to the data source. Also, the output
of this services is used by the Energy Balancer service. The Load
Forecasting service is scheduled daily to predict the energy con-
sumption for the next day. The evaluation of resource utilization
for this type of machine learning service is presented in Table 3,
showing moderate CPU and memory usage, a reasonable process-
ing duration with minimal impact on latency between nodes and
bandwidth consumption.

Table 3: Load Forecasting Service Requirements

Duration CPU RAM
20.5 MB

Bandwidth
20 KB/s

Latency

1236 ms 37.8% 200 ms

We overloaded the Green Energy Forecasting subservice on Edge
Node 3 with complex data streams. As the subservice’s CPU demand
exceeded the processing capacity of the node, a CPU pressure alert
was triggered and forwarded by the Alert Manager. The alert was
received by the Orchestrator, which planned and executed a redis-
tribution, moving Green Energy Forecasting to Edge Node 1 using
a scaling-based strategy for execution that maintained the service’s
high availability with zero downtime. The migration process intro-
duces brief bandwidth and latency overhead due to the subservice’s
host image pulling. As shown in Figure 5b, bandwidth peaks at 4.0
Mb/s for a minute, without disrupting other services or causing
network congestion. Similarly, Figure 5c shows a temporary inter-
node latency spike up to 10 ms, with negligible impact. Figure 5a
shows CPU usage before and after migration. The Green Energy
Forecasting service runs smoothly without resource starvation,
confirming the framework’s ability to handle resource pressure
alerts and maintain continuous operation with minimal overhead.
The Alert Manager emits events when a subservice changes its
status. During migration, these trigger ownership transfer of the
token minted at subservice start, enabling accurate tracking of the
Green Energy Forecasting subservice’s location. When the sub-
service stops, its token is burned. The gas consumption for token
operations on-chain is given in Table 1.

Discussion. The proposed orchestration framework can be ex-
tended for federated learning services to coordinate and ensure

CPU Usage Bandwidth Usage

aMofs
3Mols
04 2Mols

Mol
1305 1310 1315

0Mofs
iger", pod="green-energy-forecasting-6bbccS67ds-4tmp4™) 0.496 1305
— edget: 192168.201131:9100

(node="edge3", pod="g:

rgy-forecasting-6obccS6705-4n8g") To4

(a) CPU usage before/after migration

1310

(b) Migration Bandwidth Overhead

Toderean et al.

Latency Links

12ms
1oms
ems
6ms
ams
2ms
05" —
1305 1310 135
Name
— edge1 -> edge2

edge3 -> edge2

(c) Pod Migration Latency Overhead

Figure 5: Overview of pod migration performance: CPU, bandwidth, and latency overhead

efficient decentralized machine learning training across edge nodes
in the smart grid. The orchestrator service requires information
about the computational resources available and statistical energy
data from the edge nodes. In addition, it gathers information about
the federated process regarding the hyperparameters used for model
training and their distribution. Then, the orchestrator performs clus-
tering and hyperparameter tuning to improve the communication
and computational efficiency. For example, in a peer-to-peer feder-
ated learning process the orchestrator can increase communication
efficiency by clustering edge nodes based on their characteristics.
The edge nodes with similar profiles are grouped together and
they communicate only with their clustering neighbors reducing
communication overhead whilst simultaneously addressing the
non-IID characteristic of energy timeseries. In addition, by perform-
ing hyperparameter tuning, it can improve the federated process
by increasing the convergence speed and balance the local training
across clients with different characteristics or energy profiles.

4 Conclusions

We presented a graph-driven orchestration framework designed
to support energy services across edge—fog—cloud infrastructures,
combining efficient task placement via swarm intelligence with in-
teroperable, traceable execution. Real-world validation on a KubeEdge
testbed confirms its effectiveness under dynamic load with zero
downtime. Key challenges ahead include scaling to larger topolo-
gies, adapting to highly volatile workloads, and automating policy-
compliant service migration across heterogeneous administrative
domains.

Acknowledgments

This research received funding from the European Union’s Horizon Europe
research and innovation program under the Grant Agreements number
101136216 (Hedge-IoT). Views and opinions expressed are, however, those
of the author(s) only and do not necessarily reflect those of the European
Union or the European Climate, Infrastructure, and Environment Executive
Agency. Neither the European Union nor the granting authority can be held
responsible for them.

References

[1] Hyame Assem Alameddine, Sanaa Sharafeddine, Samir Sebbah, Sara Ayoubi, and
Chadi Assi. 2019. Dynamic Task Offloading and Scheduling for Low-Latency
IoT Services in Multi-Access Edge Computing. IEEE . Sel. Areas Commun. 37, 3
(2019), 668-682.

Gabriel Antonesi, Tudor Cioara, Ionut Anghel, Ioannis Papias, Vasilis Micha-
lakopoulos, and Elissaios Sarmas. 2025. Hybrid transformer model with liquid
neural networks and learnable encodings for buildings’ energy forecasting. En-
ergy and AI 20 (2025), 100489.

Gabriel Ioan Arcas, Tudor Cioara, Ionut Anghel, Dragos Lazea, and Anca Hangan.
2024. Edge offloading in smart grid. Smart Cities 7, 1 (2024), 680-711.

[4

[14]

[15]

=
&

(17]

(18]

[21]

[22]

(23]

Fetia Bannour, Stefania Dumbrava, and Alex Danduran-Lembezat. 2022. GOX:
Towards a Scalable Graph Database-Driven SDN Controller. In NetSoft. IEEE,
278-280.

Dimitris Bertsimas and John Tsitsiklis. 1993. Simulated annealing. Statistical
science 8, 1 (1993), 10-15.

Maciej Besta, Robert Gerstenberger, Emanuel Peter, Marc Fischer, Michal Pod-
stawski, Claude Barthels, Gustavo Alonso, and Torsten Hoefler. 2024. Demysti-
fying Graph Databases: Analysis and Taxonomy of Data Organization, System
Designs, and Graph Queries. ACM Comput. Surv. 56, 2 (2024), 31:1-31:40.
Furong Chai, Qi Zhang, Haipeng Yao, Xiangjun Xin, Ran Gao, and Mohsen
Guizani. 2023. Joint Multi-Task Offloading and Resource Allocation for Mobile
Edge Computing Systems in Satellite IoT. IEEE Trans. Veh. Technol. 72, 6 (2023),
7783-7795.

Luigi Coppolino, Alessandro De Crecchio, Roberto Nardone, Alfredo Petruolo,
Luigi Romano, and Federica Uccello. 2024. Exploiting Data Spaces to Enable
Privacy Preserving Data Exchange in the Energy Supply Chain. Proceedings of
the ITASEC (2024).

Marco Dorigo, Mauro Birattari, and Thomas Stutzle. 2007. Ant colony optimiza-
tion. IEEE computational intelligence magazine 1, 4 (2007).

Wenhao Fan. 2024. Blockchain-Secured Task Offloading and Resource Allocation
for Cloud-Edge-End Cooperative Networks. IEEE Trans. Mob. Comput. 23, 8
(2024), 8092-8110.

Stephanie Forrest. 1996. Genetic algorithms. ACM computing surveys (CSUR) 28,
1 (1996), 77-80.

Pramod A. Jamkhedkar, Theodore Johnson, Yaron Kanza, Aman Shaikh, N. K.
Shankaranarayanan, and Vladislav Shkapenyuk. 2018. A Graph Database for a
Virtualized Network Infrastructure. In SIGMOD Conference. ACM, 1393-1405.
Rohaya Latip, Jafar Aminu, Zurina Mohd Hanafi, Shafinah Kamarudin, and
Danlami Gabi. 2024. Metaheuristic task offloading approaches for minimization
of energy consumption on edge computing: a systematic review. Discov. Internet
Things 4, 1 (2024), 35.

Seungkyun Lee, SuKyoung Lee, and Seung-Seob Lee. 2021. Deadline-Aware Task
Scheduling for IoT Applications in Collaborative Edge Computing. IEEE Wirel.
Commun. Lett. 10, 10 (2021), 2175-2179.

Zhaoxi Liu and Lingfeng Wang. 2020. Leveraging network topology optimiza-
tion to strengthen power grid resilience against cyber-physical attacks. IEEE
Transactions on Smart Grid 12, 2 (2020), 1552—-1564.

Michael Pendo John Mahenge, Chunlin Li, and Camilius A. Sanga. 2022. Energy-
efficient task offloading strategy in mobile edge computing for resource-intensive
mobile applications. Digit. Commun. Networks 8, 6 (2022), 1048-1058.

Quy Nguyen Minh, Van-Hau Nguyen, Vu Khanh Quy, Le Anh Ngoc, Abdellah
Chehri, and Gwanggil Jeon. 2022. Edge computing for IoT-enabled smart grid:
The future of energy. Energies 15, 17 (2022), 6140.

Daisy Nkele Molokomme, Adeiza James Onumanyi, and Adnan M. Abu-Mahfouz.
2022. Edge Intelligence in Smart Grids: A Survey on Architectures, Offloading
Models, Cyber Security Measures, and Challenges. J. Sens. Actuator Networks 11,
3 (2022), 47.

Yuvraj Sahni, Jiannong Cao, and Lei Yang. 2019. Data-Aware Task Allocation for
Achieving Low Latency in Collaborative Edge Computing. IEEE Internet Things
7. 6,2 (2019), 3512-3524.

Talita De Paula Cypriano De Souza, Christian Esteve Rothenberg, Mateus Au-
gusto Silva Santos, and Luciano Bernardes de Paula. 2015. Towards Semantic
Network Models via Graph Databases for SDN Applications. In EWSDN. IEEE
Computer Society, 49-54.

Liana Toderean, Mihai Daian, Tudor Cioara, Ionut Anghel, Vasilis Michalakopou-
los, Efstathios Sarantinopoulos, and Elissaios Sarmas. 2025. Heuristic based
federated learning with adaptive hyperparameter tuning for households energy
prediction. Scientific Reports 15, 1 (2025), 12564.

Thsan Ullah, Hyun-Kyo Lim, Yeong-Jun Seok, and Youn-Hee Han. 2023. Opti-
mizing task offloading and resource allocation in edge-cloud networks: a DRL
approach. J. Cloud Comput. 12, 1 (2023), 112.

Su Yao, Mu Wang, Qiang Qu, Ziyi Zhang, Yi-Feng Zhang, Ke Xu, and Mingwei
Xu. 2022. Blockchain-Empowered Collaborative Task Offloading for Cloud-Edge-
Device Computing. IEEE J. Sel. Areas Commun. 40, 12 (2022), 3485-3500.

	Abstract
	1 Introduction
	2 Orchestration and Data Management
	2.1 Graph Data Model and Task Placement
	2.2 Data Interoperability and Task Tracing

	3 Preliminary Solution Validation
	4 Conclusions
	References

