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Abstract

Parameter-efficient fine-tuning (PEFT) methods reduce the compu-
tational costs of updating deep learning models by minimizing the
number of additional parameters used to adapt a model to a down-
stream task. While extensively researched in large language models
(LLMs), their application to smaller models used on edge devices,
such as convolutional neural networks, remains underexplored.
This paper benchmarks and analyzes popular PEFT methods on con-
volutional architectures typically deployed in resource-constrained
edge environments. We evaluate LORA, DoRA, and GALoORE for
updating standard and depthwise convolutional architectures to
handle distribution shifts and accommodate unseen classes. We
utilize recently proposed PyTorch profilers to compare the updated
model performance and computational costs of these PEFT methods
with traditional fine-tuning approaches. With resource efficiency in
mind, we investigate their update behavior across different rank di-
mensions. We find that the evaluated PEFT methods are only half as
memory-efficient when applied to depthwise-separable convolution
architectures, compared to their efficiency with LLMs. Conversely,
when targeting convolutional architectures optimized for edge de-
ployment, adapter-based PEFT methods can reduce floating point
operations (FLOPs) during model updates by up to 95%. These in-
sights offer valuable guidance for selecting PEFT methods based on
hardware constraints, performance requirements, and application
needs. Our code is online'.
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1 Introduction

Edge devices are increasingly used to deploy deep neural network
(DNN) models for local data processing [36], enhancing applica-
tion accessibility and security by reducing latency and preserving
user privacy through the elimination of server communication [31].
However, these devices face significant hardware constraints, such
as limited memory, computational capacity and dynamic resource
constraints [5], which pose challenges for deploying DNNs [22].
Additionally, DNNs deployed at the edge often struggle with distri-
bution shifts in incoming data, leading to degraded performance
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over time [27]. Maintaining performance under such conditions
requires models to be updated efficiently within the hardware con-
straints specific to each edge device.

Several approaches have been proposed to update models for
unseen classes and distribution shifts. These fall into two categories:
methods that build robust invariant models, and those that use
domain adaptation techniques. The former pre-train models to
be resilient to distribution shifts using data augmentations [32],
contrastive loss functions [19], and regularization strategies that
reduce sensitivity to domain discrepancies [1]. The latter adapt
models at deployment time by training a parameterized subspace of
configurable networks [30] or fine-tuning pre-trained features via
backpropagation [28]. While invariant models are more robust to
expected shifts, they may fail to generalize to unseen distributions
and can be brittle when adapted via backpropagation [1].

However, on-device adaptation is limited by the computational
constraints of edge devices, since standard backpropagation re-
quires at least three times more computation than inference [34].
This challenge is exacerbated by the high resource demands of state-
of-the-art models. For instance, Vision Transformers (ViT), despite
their strong performance in computer vision [7], have quadratic
computational complexity with respect to input size, making them
unsuitable for resource-constrained settings [7]. As a result, Convo-
lutional Neural Networks (CNNs), whose complexity scales linearly
with input size [15], are typically preferred for edge deployment.
Still, updating CNNs via backpropagation remains computationally
expensive and often impractical on low-power devices [9]. To ad-
dress this, MobileNet architectures replace standard convolutions
with depthwise-separable convolutions (DSCs), reducing inference
computation by a factor of 8 to 9 [15].

To overcome the limitations of updating models on edge devices
with constrained resources, parameter-efficient fine-tuning (PEFT)
methods have emerged as a promising solution. Assuming updates
to a pre-trained model lie in a low-rank subspace [16], PEFT reduces
computational and memory demands by restricting gradients or
weight updates to low-rank representations [16, 35]. While effective
in LLMs [10], PEFT remains underexplored for CNNs in edge vision
tasks. Moreover, tools for evaluating PEFT on CNNs in terms of
resource usage, complexity, and accuracy are lacking.

This paper addresses the question: Given the hardware constraints
of an edge device and a pre-trained convolutional model, which PEFT
method best enables efficient and effective on-device updates? We pro-
pose a novel framework to estimate the efficiency and effectiveness
of PEFT methods for specific tasks. Our contributions are:

e We extend PyTorch’s FLOPs counter and memory tracker
to assess PEFT methods on CNN models typically deployed
on edge devices.
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Figure 1: Peak memory consumption analysis of PEFT methods for different models. Analysis of forward and backward passes
for a single 224 x 224 image. The model architecture influences the total peak memory across the profiled memory groups.
For depthwise convolution models, LORA, DoRA, GALoORE, and BN+H show higher peak memory usage compared to standard
convolution models due to activations required memory. The peak memory usage of DoRA is 49% to 51% higher than that of
LoRA for the MobileNetV2 depthwise architecture. For ResNet18 a larger share of gradient calculation and optimizer state
memory enhances the efficiency of LORA and DoRA PEFT methods.

e We evaluate PEFT performance on pre-trained CNNs, an-
alyzing peak memory usage, FLOPs, and accuracy when
updating to unseen classes or handling distribution shifts.

e We benchmark LoRA, DoRA, and GALore for updating
standard and depthwise convolutional architectures to han-
dle distribution shifts and accommodate unseen classes. We
show that fine-tuning depthwise convolutional architec-
tures can diminish resource efficiency of PEFT methods.

e We investigate the impact of the rank hyperparameter on
the adaptation accuracy.

2 Parameter-Efficient Fine-Tuning

PEFT methods reduce computational and memory costs by min-
imizing the number of updated parameters. This is achieved by
assuming that weight updates lie in a low-rank subspace, leading
to lightweight adaptations without sacrificing performance [16].
While extensively studied in LLMs, the application of PEFT meth-
ods to CNNs under resource constraints remains underexplored.
This section introduces popular PEFT methods evaluated in this
work: Low-Rank Adaptation (LoRA), Weight-Decomposed Low-
Rank Adaptation (DoRA), Gradient Low-Rank Projection (GALORE),
and head-only fine-tuning with batch-normalization (BN+H).
Low-Rank Adaptation (LORA). LoRA introduces low-rank
matrices into the weight update process, enabling fine-tuning with a
small number of additional parameters [16]. Specifically, the weight
update AW is expressed as AW = ABT, where A € RAX" and
B € R?¥" are low-rank matrices with r < d. This decomposition
significantly reduces the number of parameters and computational
complexity, as the gradients are computed and applied only for
the low-rank factors A and B. Advantages of LoRA include its
simplicity, scalability, and compatibility with various architectures.
However, its performance may degrade when the rank r is set too
low, particularly for tasks requiring significant adaptation.
Weight-Decomposed Low-Rank Adaptation (DoRA). DoRA
initially decomposes the pre-trained weights Wy into magnitude
vector m and direction matrix V and only applies LoRA to V. During
training, only m and V are updated. The fine-tuned weights W’ can

/_ VHAV _  Wi+BA o
be formulated as W’ = MYV = ™ Wy BA[. where AV = BA is

the directional update and || - || represents the vector-wise norm
across each column vector [23]. The authors introduce DoRA as
an alternative to LORA, demonstrating that it more closely resem-
bles the training behavior of full fine-tuning when comparing the
magnitude and directional updates of the weight matrices of LLMs
during training [23]. The trainable magnitude vectors introduce
slightly more trainable parameters for DORA compared to LoRA.
Additionally, the weight decomposition in DoRA introduces a more
complex computational graph during backpropagation.

Gradient Low-Rank Projection (GALORE). GALORE combines
low-rank approximation with gradient sensitivity to adaptively
refine parameter updates [35]. Given the gradient matrix G, Ga-
Lore formulates updates as G ~ 37_, O'iuivl.T where u; and v; are
singular vectors and o; are singular values obtained from Singu-
lar Value Decomposition (SVD) of G. GALORE dynamically deter-
mines the rank r by truncating based on a threshold €, ensuring
2i_10i/2j0j 2 1~ e This approach ensures an optimal trade-
off between computational efficiency and approximation accuracy,
adapting resource usage to the task requirements. However, the
reliance on SVD and rank truncation can be computationally ex-
pensive, especially for high-dimensional gradients.

Head-only Fine-Tuning with Batch-Normalization (BN+H).
This fine-tuning approach only updates the final classification layer
(i.e., head) using backpropagation and the batch normalization (BN)
statistics during the forward pass. The updates of the BN statistics
introduce additional flexibility and help to address feature distribu-
tion shifts, improving update performance in certain scenarios [8].
While the low number of trainable parameters makes this method
highly resource efficient, its effectiveness depends on the degree of
distribution shift between the pre-training and target datasets.

We evaluate the practicality of PEFT methods for CNNs on edge
devices by analyzing trade-offs in computation, memory, and ac-
curacy, and compare them to head-only with batch normalization
updates (BN+H) and full fine-tuning (FFT).

3 Profiling PEFT Methods

Performance Measures. We evaluate the performance of PEFT
methods by measuring the number of FLOPs and the peak memory
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Figure 2: FLOPs analysis of PEFT methods for different models. Analysis of forward and backward passes for a single 224 x
224 image. Except for GALORE all the PEFT methods reduce the required FLOPs significantly compared to FFT. Depthwise
architectures (i.e., MobileNets) report a FLOPs reduction of more than 10x compared to standard convolution.

usage required to update the models to each task during the forward
and backward passes. The former serves as the inference latency to
estimate the model’s execution time on an edge device [21], while
the latter is considered the major bottleneck for enabling neural
networks on the edge [22]. Using these measurements for each
PEFT method configuration, along with the edge device’s hardware
and latency constraints, our framework offers guidance to estimate
the efficiency and effectiveness of PEFT methods for specific tasks.

3.1 Profiling Framework

We modify an existing FLOPs counter? to distinguish between the
FLOPs used during gradient computation and those used during the
optimizer’s weight update step in the backward pass. An example
usage can be seen in Listing 1.

flops_counter = FlopCounterMode (model)

3 with flops_counter:
4 optimizer.zero_grad()
5 outputs = model(input_tensor)
6 loss = outputs.sum()
loss.backward()
8 flops_counter.reset_module_tracking()
9 optimizer.step()
Listing 1: Example of profiler usage to compute model’s
forward-backward FLOPs.

The FLOPs counter uses __torch_dispatch__ to attach hooks
to the tensor level operations of PyTorch [25]. By tracking the op-
erations for tensor convolution, multiplication, addition and batch
normalization we calculate the number of required FLOPs for each
operation from the operand shapes.

Memory. PyTorch’s latest memory tracker? can distinguish be-
tween the memory groups listed in Table 1. We modify the memory
tracker to profile the peak memory usage of each group regardless
of when it occurs, with total memory computed as their sum and
profiling done using the steps reported in Listing 1.

4 Evaluation

To investigate the capabilities of PEFT methods for models typi-
cally deployed on edge devices, we evaluate the performance of
LoRA, DoRA, GALorEg, BN+H and FFT on MobileNetV2 [29] and

Zhttps://gist.github.com/soumith/581c3d40d41bb9d08041431c656b233
3https://github.com/pytorch/pytorch/pull/124688

Table 1: PyTorch memory groups analyzed during training.
The tracker categorizes memory usage by group, offering
detailed insights into resource allocation.

Group Description

PARAM  Model parameters.

GRAD  Gradients of model weights during backpropagation.
ACT Intermediate activations stored for the backward pass.
OPT Optimizer state memory (e.g., momentum buffers).
TEMP Temporary buffers used in gradient computations (e.g.,

autograd intermediates).

MobileNetV3 [14]. These models employ optimized DSCs layers,
which reduce the computational cost during inference by up to 9x
times [15]. To highlight the performance and efficiency differences
of PEFT methods on DSC architectures compared to standard convo-
lution architectures, we also include the results for ResNet-18 [11].
We show accuracy and profiling results for all models, initially pre-
trained on ImageNet [6], on various downstream tasks, including
CIFAR10-C [12] corruptions and the Visual Wake Words [4] dataset
(VWW). We choose CIFAR-10-C corruptions of varying difficulty
to highlight the task-specific achieved accuracy of the investigated
PEFT methods and demonstrate the advantages of LoRA, DoORA,
and GALORE over the simpler BN+H approach. Furthermore, we
evaluate the effectiveness of the selected PEFT methods on the
VWW dataset for the binary classification task of detecting the
presence of a person in an image. Additionally, we conduct the
same experiments on the MobileNetV2 and ResNet18 models pre-
trained on CIFAR-10 [20]. For all the experiments we followed the
hyperparameter recommendations from [16, 23, 35] to ensure a fair
comparison. We use implementations of LoORA and DoRA from the
Hugging Face PEFT library* and the pre-release implementation
of GaLoRE® according to [35] with small adaptions to suit CNN
architectures on the edge.

Memory. In Fig. 1 we analyze the peak memory usage of the
models’ forward pass, backward pass, and optimizer step for all
PEFT methods. We observe that the investigated PEFT methods
only reduce memory usage for gradients and optimizer groups. For

4https://huggingface.co/docs/peft/index
Shttps://github.com/jiaweizzhao/Galore
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models that use DSCs, the storage required for activation maps is
the primary contributor to total peak memory, limiting the effective-
ness of PEFT methods for such model architectures. With minimal
trainable parameters, BN+H fine-tuning stands out as the most
memory-efficient PEFT method. By avoiding full backpropagation
through all layers, it achieves up to 85% total peak memory savings
compared to FFT (Fig. 1a). Since the classifier of MobileNetV3 com-
prises two trainable linear layers, BN+H exhibits reduced memory
efficiency on this model compared to MobileNetV2, achieving only
a 52% reduction in peak memory usage relative to FFT (Fig. 1b).

We observe LORA to be the second most memory efficient PEFT
method, with a peak memory reduction of up to 67% compared
to FFT on ResNet-18 (Fig. 1c), replicating the improvement ob-
served on LLMs [16]. However, for models using DSCs, we observe
a smaller peak memory reduction, ranging between 22% on Mo-
bileNetV2 (Fig. 1a) and 48% on MobileNetV3 (Fig. 1b), which is
notably lower than the improvements observed in LLMs. Standard
convolution CNNs, such as ResNet-18, allocate a larger portion of
peak memory to optimizer state and gradients compared to models
with DSCs, making LoRA more memory-efficient for these architec-
tures (Fig. 1). Although DoRA offers an almost costless alternative
to LoRA during inference [23], its more complex computational
graph leads to a memory overhead between 29% on MobileNetV3
(Fig. 1b) and 58% on ResNet-18 (Fig. 1c) during training.

Contrary to LoRA and DoRA, GALORE only optimizes the mem-
ory used for storing optimizer states [35]. This also implies that
standard convolution CNNs, like ResNet-18, benefit more from
GAaLorE than models using DSCs, due to the larger share of opti-
mizer state memory in the total peak memory (Fig. 1c). Similarly,
as reported in [35] for LLMs, our results in Fig. 1 demonstrate an
average reduction of 65% in optimizer state memory across the
tested models. However, for models using DSCs, this only results
in an overall peak memory reduction of around 5-10%, as the op-
timizer state memory is not the primary contributor (Fig. 1a and
Fig. 1b). While [35] reports that GALORE is more memory-efficient

g ResNet-18

10 epochs without validation loss
improvement.

than LoRA for LLMs, we did not observe this behavior in the CNNs
evaluated in this study (Fig. 1). With its significantly smaller num-
ber of trainable parameters, LORA utilizes only about 10% of the
optimizer state memory required by GALORE, resulting in higher
memory efficiency. We observe similar results to those in Fig. 1 for
models pre-trained on CIFAR-10 using 32 X 32 images, remaining
within acceptable limits.

FLOPs. In Fig. 2 we analyzed the FLOPs required by the PEFT
methods to perform forward and backward passes. For standard
convolution CNNs, the ratio of FLOPs required for the backward
pass to those needed for the forward pass is approximately 2:1 [13].
DSCs alter this ratio by splitting the filters of the convolutional
layer into groups, where the number of groups equals the number
of input channels Cj,. With each filter only processing a single
input channel, the FLOPs during the forward pass of DSC layers
are reduced by the factor of CLm During the backward pass of DSC
layers, the FLOPs include computations for both the input gradient
and the weight gradient. While the weight gradient benefits from
reduced FLOPs due to filter grouping, the input gradient does not.
Consequently, this results in an approximate 20:1 ratio between
the FLOPs required for the forward pass and the backward pass
during FFT (Fig. 2). This finding underscores the need for further
investigation into optimizing backward pass FLOPs for DSC models.

Adapter-based PEFT methods, such as LoORA and DoRA, sig-
nificantly reduce the 20:1 FLOPs ratio of DSCs to approximately
1.2:1, achieving an overall FLOPs reduction of 80% for MobileNetV3
(Fig. 2b) compared to FFT. For standard convolutional models like
ResNet-18, which exhibit the expected 2:1 FLOPs ratio between the
forward and backward pass, the FLOPs reduction achieved by LoRA
and DoRA is limited to approximately 57% (Fig. 2c). Additionally,
we observe that the SVD operation in GALORE’s optimizer step in-
troduces a FLOPs overhead of 10% to 30% compared to FFT (Fig. 2),
slightly exceeding the 10% overhead reported for LLMs in [35] in
certain models.
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Accuracy and Performance. Our results in Fig. 3 demonstrate,
that the accuracy after fine-tuning with PEFT methods is signifi-
cantly influenced by the model architecture, the size of the model,
and the specific fine-tuning task. While BN+H demonstrates ac-
ceptable performance on lightweight adaptions like the CIFAR10-C
Brightness (br) corruption and the VWW dataset, LORA, DoRA and
GaLoRE consistently outperform BN+H fine-tuning on all other
tasks, with accuracy differences of up to 40%.

By utilizing full-rank weight updates, GALORE shows the most
consistent accuracy across different fine-tuning tasks and model
architectures and achieves comparable results to FFT. While LoRA
and DoRA achieve similar accuracy scores on ResNet-18, the adapter-
based PEFT methods exhibit inconsistent performance across dif-
ferent fine-tuning tasks on MobileNet architectures. Notably, for
challenging fine-tuning tasks such as Impulse noise (in) and Gauss-
ian noise (gn), MobileNets pre-trained on ImageNet experience
accuracy drops of up to 20% when using LoRA or DoRA compared
to GaLore (Fig. 3a and Fig. 3b). GALORE offers greater robustness
than LoRA but uses 1.13-2X more memory and 2-20x more FLOPs,
depending on the model. In contrast, LORA requires about 2Xx more
training iterations to converge.

Fig. 3f shows that, unlike results for LLMs reported in [35],
LoRA outperforms GALORE by up to 2.5% on some tasks. Simi-
larly, contrary to [23], DORA shows no accuracy gain over LORA
on edge-optimized CNNs in any experiment (Fig. 3). Results on
CIFAR-10 pretraining mirror these trends, with all models improv-
ing on corruption tasks and LoRA consistently offering the best
accuracy-efficiency trade-off.

Impact of the rank. Theoretically, a PEFT method’s rank de-
termines its learning capacity in the low-rank space, with higher
ranks better approximating FFT performance [16, 35]. However,
as shown in Fig. 4, fine-tuning a pre-trained model for 5 epochs
reveals that higher rank does not always improve accuracy.

Unlike LLM results in [35], we find that for tasks where the pre-
fine-tuning accuracy is high (Fig. 4a and Fig. 4f), the accuracy of
GAaLORE may degrade with a higher rank setting. In these cases,
LoRA and DoRA achieve up to 6% higher accuracy compared to
GALoRE. We conjecture that for these fine-tuning tasks, a lower
rank setting provides a smoother gradient landscape that is easier
to optimize, leading to better model performance.

When the pre-trained model performs poorly on a fine-tuning
task, adapter-based methods like LORA and DoRA often struggle
to adapt (Fig. 4e). In such cases, GALORE outperforms them by up
to 50% at low ranks, benefiting from its full-rank weight updates.
We hypothesize that the combined gradient rank of LoRA and
DoRA is insufficient for small r, particularly when the fine-tuning
task diverges significantly from the pre-training objective. This
idea is supported by a similar effect observed in federated learning
scenarios in [2], where increasingly diverse data distributions across
clients also increased the accuracy gap between LoRA and FFT.

Results with CIFAR-10 pretraining follow the same trends. Al-
though [23] reports DoRA outperforming LoRA by up to 37% for
r < 16, we observe no such gain, as both perform similarly across
tasks. Further analysis is left for future work.

Summary. Overall, the PEFT methods LoRA, DoRA, and Ga-
Lore significantly outperform BN+H in terms of accuracy, espe-
cially on challenging fine-tuning tasks. GALORE demonstrates ro-
bust accuracy and requires, on average, approximately 2x fewer
iterations during fine-tuning compared to LoORA, DoRA and BN+H.
Although LoRA offers a better trade-off between resources and
accuracy, with particularly low FLOPs consumption on models em-
ploying DSCs and significantly improved memory efficiency on
standard convolution CNNs, it comes at the cost of longer training
times and less robust accuracy scores on hard fine-tuning tasks.
While DoRA introduces a memory overhead compared to FFT, it
does not show improved performance over LoRA in any of our ex-
periments, making it less efficient than LoRA for CNNs optimized
for edge devices.

5 Related Work

Test-time Adaptation on the Edge. Test-time adaptation (TTA)
has emerged as a technique for dynamically adjusting model’s
parameters to the incoming test data stream to address domain
shifts [24, 33]. TTA enables deep models to adjust their predic-
tions based on the characteristics of the incoming test data, which
may differ from the training data [17]. While TTA is extensively
employed to adapt deep models at the edge, it presents several
limitations, including representation collapse due to overfitting
on the test data [26] and the inability to handle open set domain
adaptations [3]. Furthermore, TTA model’s weight update exhibits
memory usage similar to full fine-tuning, i.e., infeasible at the edge,
since the model needs to backpropagate through its whole archi-
tecture to compute the gradient [18] and store it in the optimizer
memory buffer. PEFT methods mitigate these limitations by learn-
ing a set of low-rank external matrices [16], or by fine-tuning the
model with a memory-efficient low-rank projection of the gradi-
ent [35] and therefore reducing the required optimizer memory.

Parameter-Efficient Fine-Tuning for LLMs. PEFT methods
have drawn attention for fine-tuning large language models (LLMs)
without incurring the prohibitive computational or memory costs
of standard fine-tuning methods. PEFT methods introduce a small
number of additional parameters to be fine-tuned, i.e., through low-
rank decomposition and specialized adapters, while keeping the
model weights frozen or updating the weights through a low-rank
projection of the gradients. While these methods have been studied
for LLMs fine-tuning [10], analysis of their performance for on-
device deep model updates is lacking. In contrast to previous works,
we explore the performance of PEFT methods for optimized deep
learning models for edge devices, and compare their performance
and computational cost for different downstream tasks.

6 Conclusion, Limitations, and Outlook

This study benchmarks parameter-efficient fine-tuning (PEFT) meth-
ods on CNN architectures for edge devices, revealing distinct trade-
offs between accuracy and resource efficiency. While LoRA achieves
the best balance between performance and computational cost
in most scenarios, DORA’s additional memory overhead limits
its applicability in resource-constrained settings. GALORE demon-
strates robust accuracy but incurs higher computational complexity



due to SVD-based updates. Across architectures using depthwise-
separable convolutions, PEFT methods are only half as memory-
efficient as reported for LLMs, with adapter-based methods achiev-
ing up to 95% FLOPs reduction compared to full fine-tuning. These
findings provide actionable insights into selecting PEFT methods
for edge deployments, depending on hardware constraints and
application needs.

Limitations. This study does not include on-device profiling,
limiting realism for specific deployment scenarios. Comparisons
are based on fixed hyperparameters without extensive tuning, and
quantization is not considered. While focused on CNNs, general-
ization to other edge-relevant architectures like lightweight trans-
formers remains unexplored. These aspects are left for future work.
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Figure 4: Impact of different ranks on adaptation accuracies.
Two pre-trained (i.e, ImageNet and CIFAR10) MobileNetV2
models are fine-tuned for five epochs on three different
datasets (i.e., CIFAR10-C Brightness (br), CIFAR10-C Impulse
noise (in) and VWW) by varying the PEFT methods ranks.
PEFT methods’ performance is influenced by the initial task
accuracy of each pre-trained model.
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