Energy-Efficient Change Point Detection Algorithm for
Resource-Constrained Devices

Ruitao Xue”
R.Xue5@newecastle.ac.uk
Newecastle University
Newecastle upon Tyne, UK

Devki Nandan Jha
dev.jha@newcastle.ac.uk
Newcastle University
Newcastle upon Tyne, UK

Rajiv Ranjan
Raj.Ranjan@newcastle.ac.uk
Newcastle University
Newcastle upon Tyne, UK

Abstract

This paper presents microWATCH, an efficient change point de-
tection (CPD) algorithm designed for resource-limited IoT devices.
Our proposed microWATCH integrates lightweight statistical mea-
sures with targeted computational optimizations to reduce com-
putational overhead and ensure efficient execution. Tested on 42
real-world datasets, it achieved state-of-the-art accuracy (F1 score)
among algorithms capable of running on ultra-low-power micro-
controllers, balancing high accuracy with significantly lower energy.
This makes microWATCH highly suitable for IoT edge deployment.
We also introduce CPDPerf, an open-source framework for eval-
uating resource-constrained CPD, demonstrating a practical path
toward reliable on-device intelligence.

CCS Concepts

« Computing methodologies — Anomaly detection; « Com-
puter systems organization — Sensor networks; « Software
and its engineering — Power management.

Keywords

Change Point Detection, Edge Computing, Energy Consumption,
Benchmarking

1 Introduction

Data quality is critical in the Internet of Things (IoT), where decisions
in predictive maintenance [1], real-time monitoring [2], smart city
[3], and risk management rely on accurate sensor data [4]. Poor
data from sensor malfunctions or environmental shifts can lead
to flawed insights and costly failures [5]. Change Point Detection
(CPD) is a crucial tool for maintaining data integrity by automatically
detecting significant shifts in the underlying data distribution of a
time series [6]. By identifying data drift and anomalies at the source,
CPD ensures the reliability of IoT-driven analytics and improves
operational efficiency.

However, the practical deployment of CPD is often limited by
device constraints. Sending raw data to the cloud for analysis is

Kamil Faber
kfaber@agh.edu.pl
AGH University of Krakow
Krakow, Poland

Bartlomiej Sniezynski
bartlomiej.sniezynski@agh.edu.pl
AGH University of Krakow
Krakow, Poland

Wojciech Kalka
wkalka@agh.edu.pl
AGH University of Krakow
Krakow, Poland

Roberto Corizzo
rcorizzo@american.edu
American University
Washington, DC, United States

Tomasz Szydlo
tomasz.szydlo@newecastle.ac.uk
Newcastle University
Newcastle upon Tyne, UK

frequently infeasible due to unacceptable latency [7], intermittent
network autonomy, prohibitive data costs, and significant privacy
risks [8]. This makes embedding intelligence directly onto resource-
constrained microcontrollers (MCUs) like the ESP32 a necessity [9].
Yet, this paradigm creates a fundamental conflict: many state-of-
the-art CPD algorithms, particularly those using Bayesian inference
[10] or kernel methods [11], are too resource-intensive for MCUs,
relying on extensive historical data or complex matrix operations
that exceed available memory and processing power.

To address these challenges, we propose microWATCH, a CPD al-
gorithm specifically designed for resource-constrained devices. Our
approach incorporates multiple optimizations to minimize memory
usage and computational overhead, ensuring efficient execution on
resource-constrained hardware. Additionally, we provide a MicroPy-
thon implementation compatible with CPython, enabling seamless
deployment across a wide range of devices, from microcontrollers
to more powerful edge computing systems.

Moreover, we provide CPDPerf, a standardized benchmarking
framework for comparing change point detection algorithms across
resource-constrained IoT devices. The framework allows for the
assessment of the efficiency and power consumption of CPD al-
gorithms in environments where computing, memory, and energy
resources are extremely limited. The source code for microWATCH
and CPDPerf is publicly available. !

2 Related Work

Change Point Detection (CPD) is a critical task for monitoring time
series data in applications ranging from industrial quality control [12,
13] to continual learning [14, 15]. CPD methods can be categorized
[16] as online or offline, and as univariate or multivariate. This work
focuses on online methods suitable for near real-time processing on
resource-constrained devices.

Classic statistical approaches include CUSUM [17], which mon-
itors cumulative deviations from a mean, and Geometric Moving

https://github.com/firepond/microWATCH

https://github.com/firepond/microWATCH

Average (GMA) [18], which uses a weighted average to detect grad-
ual shifts. More complex methods like Bayesian Online Change Point
Detection (BOCPD) [10] offer a principled probabilistic framework
for identifying change points, with extensions for model selection
[19] and robustness to outliers [11]. Recently, the WATCH algo-
rithm [20] introduced a Wasserstein distance-based approach for
high-dimensional data, which serves as the foundation for our work.
However, existing CPD methods and evaluation frameworks like
TCPDBench [16] primarily focus on detection accuracy, neglect-
ing the computational and energy costs. This omission presents a
significant barrier for deploying CPD on edge devices. Our work
addresses this gap by developing and benchmarking energy-efficient
algorithms specifically for this constrained environment.

3 The Design of microWATCH

In this section, we detail the design of microWATCH. We begin by
summarizing the original WATCH algorithm [20], then detail our
targeted optimizations for resource-constrained environments, and
conclude with an ablation study that quantifies the impact of each
contribution

3.1 The WATCH Algorithm: A Foundation for
Change Point Detection

The WATCH algorithm is a state-of-the-art online CPD method that
detects changes in the distribution of high-dimensional time series
data. Its core principle is to maintain a representation of the current
’stable’ data distribution and compare incoming mini-batches of data
against it using the Wasserstein distance.

Its core principle is to maintain a representation of the current
’stable’ data distribution and compare incoming mini-batches of data
against it using the Wasserstein distance.

It is important to note that this approach is designed to detect
distributional shifts between segments of data under the assumption
that the data points within each stable segment are independent and
identically distributed (i.i.d.) .

It is composed of three stages:

(1) Split time series data I; into mini-batches B;. Learn and
extract a representation from a small set of batches to form
the initial distribution D. Then the threshold of distance 7
is determined by

D,e) = Wa(B;, D
n(D, €) max A(Bj, D)

where € is the threshold ratio for the distance value.

(2) As new data points arrive in mini-batches, each batch B;
is compared with D using the Wasserstein distance: v =
W (Bi, D).

(3) If the computed distance v exceeds a predefined threshold,
a change point is detected and a new distribution is created
using the new batches. Otherwise, if the distance is below
the threshold, the new batch is incorporated into the existing
distribution.

While highly effective, WATCH was designed for powerful com-
puting systems and presents several critical bottlenecks for deploy-
ment on resource-constrained MCUs:

Xue et al.

(1) High Computational Cost: The Wasserstein distance, espe-
cially for multivariate data, involves sorting and complex
calculations that are computationally expensive.

(2) High Memory Overhead: Storing the entire history of data
points in the distribution buffer (D) can exceed the limited
RAM of an MCU, especially for long-running processes.

(3) Implementation Dependencies: The original Python/R im-
plementations rely on libraries that are unavailable in envi-
ronments like MicroPython.

Algorithm 1: Pseudo-code of the microWATCH

Data: I = (I3, Iy, ..., It) — Time Series Data

k € N - Min points required to start detection
4 € N — Max points stored for a distribution

€ € R — Threshold ratio for the distance value
® € N — Mini-batch size

Result: R: Set of change points

1 Initialization: D «— 0 S = 0;
2 Process I into sequence By, By, .., Br of non-overlapping

batches B; of size w;
3 for B; € B do

4 if |D| < k then
5 D < DU B;;
6 S=S+) B;
7 if |D| > x then
8 D= % <— Mean from running sum;
n(D, €) = e maxgep dist(B, D)
9 end
10 else
11 D= I%I <— Mean from running sum;
12 v « dist (Bi,B) <— Uses lightweight distance
13 if v > 1 then
14 C «— i*w;
15 R«— RU{c}
16 D « {Bi};
17 else
18 if |D| < u then
19 D «— DU B;j;
20 1(D, €) = e maxgep dist(B, D)
21 end
22 end
23 end
24 end

3.2 microWATCH: Optimizations for
Energy-Efficient Execution

Our microWATCH retains the core algorithmic loop of WATCH

— comparing incoming data batches to a reference distribution —

but systematically re-engineers four key aspects of the implementa-

tion to overcome the previously identified bottlenecks and ensure

efficient execution on MCUs.

Energy-Efficient Change Point Detection Algorithm for Resource-Constrained Devices

Table 1: Ablation study results quantifying the impact of op-
timizations

Stage Avg. Speedup Primary Contribution

0—1 34.5% Different distance metric, native Python
1-2 1.80x Reduces distribution mean recalculation
23 1.29x Ensures a fixed memory footprint

0—3 73.4x All Combined

1. Lightweight Distance Metrics: The primary modification is
the replacement of the Wasserstein distance. microWATCH is ar-
chitected to use a variety of lightweight statistical distance func-
tions. In this work, we evaluate 39 such measures (e.g., Euclidean,
Chebyshev?) that rely on simple arithmetic, drastically reducing
computational load. The distance dist(B, D) between a batch B and
the distribution D is now calculated between B and the mean of D:
dist(B, D).

2. Fixed-Memory with Running-Sum Mean: To eliminate the
costly recalculation of the distribution mean at every step, we re-
place this operation with a computationally trivial running-sum
update. This is complemented by replacing the dynamic Python list
D with a pre-allocated, fixed-size NumPy array, which guarantees a
constant and predictable memory footprint.

3. Self-Contained MicroPython Implementation: Finally, the al-
gorithm is implemented in pure MicroPython with a minimal de-
pendency on NumPy (or ulab in MicroPython), making it directly
deployable on MCUs without the need for the extensive libraries
required by the original WATCH.

3.3 Ablation Study and Comparing with WATCH

To quantify the impact of our design choices, we performed an
ablation study comparing the original WATCH (Stage 0) against
progressively optimized versions of microWATCH. The optimized
versions are a naive Python port using Chebyshev distance (Stage 1),
an implementation with a running sum for mean calculation (Stage
2), and finally, microWATCH with a pre-allocated NumPy buffer
(Stage 3). To ensure the most rigorous comparison, the original
WATCH was configured with its own optimal hyperparameters,
while all microWATCH stages (1-3) shared a separate set of optimal
parameters, both determined through an extensive grid search.
The performance evaluation was conducted on the eight largest
datasets (four univariate, four multivariate) from the TCPD bench-
mark. As summarized in Table 1, transitioning from the R imple-
mentation to a pure Python version (Stage 0—1) yielded the most
significant performance gain, with an average speedup of 34.5x. Our
subsequent algorithmic and memory optimizations provided fur-
ther improvements: introducing a running sum (Stage 1—2) offered
an additional 1.80x speedup by eliminating redundant calculations,
while the final move to a pre-allocated buffer (Stage 2—3) provided

?Details about other distance measures can be found in the GitHub repository: ACC,
Add. Sym. y?, Bhattacharyya, Bray-Curtis, Canberra, Chebyshev (Max), Chebyshev
(Min), Clark, Czekanowski, Divergence, Euclidean, Google, Gower, Hellinger, Jeffreys,
Jensenshannon Divergence, Jensen Difference, K Divergence, Kl Divergence, Kulczynski
d, Lorentzian, Manhattan, Matusita, Max Symmetric)(2, Minkowski (p=2), Motyka,
Neyman y?, Nonintersection, Pearson y?, Penroseshape, Sorgel, Squared y?, Squared-
chord, Taneja, Tanimoto, Topsoe, Vicis Symmetric y?, Vicis Wave Hedges, Wave Hedges

Accuracy Comparison of Different WATCH Versions

101 I

0.9 4

0.8 4

F1 Score

0.7 4

0.6

o]

0.5 4

! !
WATCH_Stagel WATCH_Stage3

WATCH Version

!
WATCH_Origin

Figure 1: F1 Scores of different WATCH versions

another 1.29x speedup. More importantly, this final step guarantees
a fixed memory footprint, a critical requirement for deployment on
resource-constrained devices. While this study uses a representative
distance metric (Chebyshev), these fundamental optimizations—a
running sum and a fixed memory buffer—provide performance ben-
efits across all distance measures evaluated in Section 5

In terms of detection accuracy, an evaluation across all 42 datasets
(Fig. 1) shows that our optimized microWATCH (Stage 3) achieves
an F1 score comparable to the original WATCH, confirming our
optimizations do not compromise effectiveness. Minor output dif-
ferences between Stage 1 and Stage 3 are attributed to expected
floating-point arithmetic variations between their respective mean
calculation methods. Overall, this study validates that our optimiza-
tions provide substantial performance gains essential for edge de-
ployment without sacrificing detection accuracy.

4 Experiment Setup

This section describes the user case study and real-world validation
of our proposed CPDPerf system.

4.1 Devices and Power Measurements

To evaluate the performance of our CPD algorithms, we conducted
experiments on two distinct devices, representing different levels
of computational capabilities and power consumption profiles: a
Raspberry Pi 4B (1.5 GHz A72, 4GB RAM), and ESP32-C6 MCU (160
MHz RISC-V, 512KB RAM).

4.2 Algorithm Implementation and Tuning

In addition to microWATCH, we have implemented several CPD
algorithms (Table 2) in MicroPython environment for comparison.
And they are compatible with CPython. Many other modern CPD
algorithms proved computationally intractable or failed to run due
to memory constraints on the ESP32. To ensure a fair comparison,
all algorithms, including our proposed methods and the baselines,
were tuned via an extensive grid search to optimize their F1 score
on each dataset. 3

3The hyperparameter settings are available in our GitHub repo.

Table 2: The CPD algorithms implemented and tested in the
benchmark

Name Method Device
BOCPD[10] Bayesian Online CPD ESP/Pi
microWATCH Our work: optimized WATCH[20] ESP/Pi
BOCPDMS[19] BOCPD with Model Selection Pi

PELT[11] Kernel CPD with Penalty ESP/Pi
CUSUM[17] Cumulative Sum Control Chart ESP/Pi

TCP/Serial
Data

CPD Communication «
MicroPython / Python / G
Linux f RT OS

Power
Device

Power Data-

Figure 2: Our test framework.

The algorithms are fine-tuned to optimize parameters that yield
the highest F1 score. Subsequently, these optimized parameters are
employed in the subsequent experiments. Grid search is utilized for
selecting the optimal parameters.

4.3 Test-case Setup

4.3.1 Datasets details. Our evaluation is based on the comprehen-
sive Turing Institute Change Point Detection (TCPD) benchmark
[6], which contains 38 univariate and 4 multivariate time series.
We leveraged the entire benchmark to conduct the robust Pareto
analysis (Fig. 3) that identified the optimal microWATCH variants.
For the subsequent head-to-head comparisons against other algo-
rithms, we present detailed results on the 4 multivariate datasets
and a representative subset of 4 univariate datasets (centralia, nile,
ozone, gdp japan) due to space limitations. This subset was chosen
to represent diverse signal types. Complete results for all 42 datasets
are available in our public repository. It is important to note that
many datasets within the TCPD benchmark, while derived from
real-world processes, are well-modeled by a sequence of segments
with distinct i.i.d. distributions. This characteristic makes the bench-
mark particularly suitable for evaluating methods like microWATCH,
which are designed to detect such distributional shifts rather than
changes in processes with strong temporal dependencies.

4.3.2 Test Framework. To evaluate CPD algorithms, we developed
a testing framework and communication protocol for collecting
performance and energy data (Fig. 2). The host computer orches-
trates the evaluation by configuring the target device with a specific
dataset and algorithm. It then commands the device to execute the
task while recording the cumulative energy consumption from an
external power meter. This automated process allows for precise
calculation of the average energy consumed per execution across
multiple runs. Full details of the framework and protocol are pro-
vided in our public repository.

Xue et al.

4.4 Memory Considerations and Hardware
Constraints

Memory efficiency plays a critical role in determining whether algo-
rithms are practical for deployment on IoT devices. Existing CPD
algorithms, such as BOCPD, BOCPDMS, and PELT, typically require
substantial memory resources. For instance, these methods store
extensive historical data, posterior distributions, or complex internal
state representations, resulting in memory complexity that scales
unfavorably with data length or dimensionality.

In contrast, our proposed algorithm and simpler methods like
CUSUM maintain minimal statistical summaries (e.g., means, vari-
ances, and counts), thus requiring only a small, fixed amount of
memory at each timestep. This yields a linear, predictable memory
footprint—critical for efficient and stable real-time operation on
memory-limited devices.

Due to these inherent memory constraints, we perform initial
experiments on a Raspberry Pi, which has sufficient RAM. How-
ever, our method is explicitly developed for extremely resource-
constrained microcontrollers such as the ESP32. Our algorithm runs
efficiently and reliably on such devices, demonstrating their practical
suitability for deployment in real-world low-power IoT scenarios.

We tried to implement the following methods, but they can not
run on ESP32 due to limited resources: CPNP , RBOCPDMS [21],
RFPOP[22], PROPHET[23], WBS [24], CoCPD [25]

5 Results and Discussion

In this section, we discuss the experimental results of microWATCH.
We compare its performance against selected CPD algorithms in
terms of accuracy and energy efficiency. Our analysis, supported by
visualizations such as box plots and Pareto front analysis, highlights
the trade-offs inherent in deploying CPD algorithms on resource-
constrained devices.

5.1 Evaluation microWATCH Distance Measures

To systematically identify the optimal trade-offs between detection
accuracy (F1 score) and energy efficiency, we evaluated 39 statistical
distance measures within microWATCH across all 42 datasets. We
ranked each measure’s performance and plotted the average F1 rank-
ing against the average energy ranking to conduct a Pareto front
analysis. Figure 3 shows this analysis, highlighting the measures
that represent optimal trade-offs where no improvement in one
criterion is possible without compromising the other. Our analysis
identified WATCH-v7 (Chebyshev-Min), WATCH-v11 (Euclidean),
and WATCH-v3 (Bhattacharyya) as key representatives for achiev-
ing the highest accuracy, best power efficiency, and best overall
balance, respectively.

5.2 Comparison with Selected Algorithms on IoT
Devices

We compare the selected representative distance measures (WATCH-v7,

WATCH-v11 and WATCH-v3) against other CPD algorithms we imple-

mented: BOCPD, PELT, BOCPDMS and CUSUM. Due to the limita-

tions of baseline methods on multivariate datasets, the analysis is

separated into univariate and multivariate datasets.

Energy-Efficient Change Point Detection Algorithm for Resource-Constrained Devices

£ 301 oo

8 a7

.ﬂ 4 36

T CARRL TS

E 2 2 3

Tn| & 5 g
~

: J2 35?1
2151 a3 29

9 a4, 31

g 93 26

% 10 P

g | | W | 28
< s 20 25 30

Average F1 ranking (lower is better)

Figure 3: Pareto analysis of all microWATCH distance mea-
sures based on rankings. Key variants discussed in the text are
v3 (Bhattacharyya), v7 (Chebyshev-Min), and v11 (Euclidean),
corresponding to points 3, 7, and 11, respectively.

Table 3: F1 scores on multivariate datasets

Dataset (WATCH)v3 v7 vil PELT BOCPDMS
apple 1 1 1 0.8 0.583
bee waggle 0.929 0.929 0929 0.929 0.651
occupancy 0.857 0974 0.621 0.683 0.583
run log 0.966 0.966 0.966 0.667 0.778

Table 4: Energy consumption (m]) on Raspberry Pi, multivari-

ate datasets

Dataset (WATCH)v3 v7 v11 PELT BOCPDMS
apple 24 14 1.1 293 1570
bee waggle 52.6 22.3 237 182,400 301,000
occupancy 63.5 353 163 3318 56400
run log 2.5 39 28 3740 5370
5.2.1 Analysis on Multivariate Datasets. We evaluated our selected

microWATCH distance measures against baseline algorithms sup-
porting multivariate data, specifically PELT and BOCPDMS. We
performed it on the Raspberry Pi, as it was the only device capable
of running all algorithms. Due to the significant memory and com-
putational requirements of PELT and BOCPDMS, they failed to run
on the ESP32. The Raspberry Pi thus serves as a necessary baseline
platform to estimate the relative power efficiency across all methods,
highlighting the orders-of-magnitude advantage of microWATCH.
The accuracy results are shown in Table 3. The energy results are
shown in Table 4.

Our data shows that the selected microWATCH distance mea-
sures significantly outperform PELT and BOCPDMS in both detec-
tion accuracy (F1 score) and energy efficiency. Notably, microWATCH
consumes roughly 1/100 the energy of PELT and 1/1000 that of
BOCPDMS, while simultaneously providing substantially higher F1
scores. Thus, our approach is distinctly superior for multivariate
data.

~

o

(5]

IS

w

N

1

Accuracy rankings (lower is better)

PELT BOCPDMS

WATCH_3 WATCH_7 WATCH_11 CUSUM BOCPD
Algorithms

=7 ° -
]
@
o 6 o - o
v
@5 o - °
E
B
w4 [o
o
£
<3 ﬁ °
o
52 , o
: |
=4
@

WATCH_3 WATCH_7 WATCH_11 CUSUM BOCPD PELT BOCPDMS

Algorithms

Figure 4: Box plot of cumulative rankings on accuracy and
energy for microWATCH and selected algorithms.

Within the selected microWATCH distance measures, a clear
accuracy-energy trade-off emerges:

e WATCH-v7 offers the best accuracy at a slightly higher energy
cost.

e WATCH-v11 excels in energy efficiency but achieves slightly
lower accuracy.

e WATCH-v3 provides a balanced choice between accuracy and
energy efficiency.

5.2.2 Analysis of Univariate Data. In addition to multivariate datasets,
we also analyzed the performance of our algorithms on all 38 univari-
ate datasets from the TCPD benchmark. To summarize the findings,
we calculated cumulative rankings for both F1-score and energy con-
sumption. Figure 4 visualizes these rankings as box plots, showing
the distribution of performance for each algorithm across all datasets.
Furthermore, Figure 5 plots the average energy ranking against
the average accuracy ranking to reveal the critical performance-
efficiency trade-offs. Detailed per-dataset results are available in our
public repository.
Key observations from the analysis are:

(1) WATCH-v7 achieves the highest F1 score, outperforming all
algorithms and the other WATCH variants. It also surpasses
BOCPD, BOCPDMS, and PELT in energy efficiency.

(2) WATCH-v11 and CUSUM exhibit the lowest energy consump-
tion. However, WATCH-v11 shows better detection accuracy
compared to CUSUM, making it preferable in energy-critical
applications.

(3) WATCH-v3 offers a balanced trade-off between accuracy and
energy usage. It achieves moderate F1 scores while con-
suming significantly less energy than heavy algorithms like
BOCPDMS, and PELT.

Algorithms Ranking based on Accuracy and Energy

7 FOCPDMS
61 FELT
"
[=]
c
=
5
= 57 SOCPD
=3
@
=
w
&4
o
v
E SJUATCH |7
N
JVATCH_3
@VATCH_11 &£usum
21 T T T T T T T T
25 3.0 35 4.0 4.5 5.0 55 6.0

Average Accuracy Rankings

Figure 5: Average energy vs. accuracy rankings for mi-
croWATCH variants and other algorithms on univariate
datasets.

These results illustrate that the microWATCH algorithm vari-
ants provide flexible performance choices, enabling practitioners
to select the most suitable distance measure according to specific
application requirements—be it maximizing accuracy, minimizing
energy, or balancing both objectives.

These results highlight the strength and versatility of our pro-
posed algorithm for practical IoT deployments, offering clear guid-
ance for practitioners based on their specific accuracy and resource
constraints.

6 Conclusion

In this work, we introduced microWATCH, an energy-efficient
CPD algorithm tailored for resource-constrained IoT devices. By
systematically evaluating statistical distance measures within our
benchmarking framework, CPDPerf, we identified variants that
map out a clear performance-efficiency trade-off.

We acknowledge that microWATCH is currently a method for
detecting changepoints for i.i.d. data and is not explicitly designed
for time series with strong temporal dependencies (e.g., ARIMA
processes) and may produce false positives in such scenarios. Future
work should focus on extending our lightweight, energy-efficient
framework to handle such data, potentially by incorporating mod-
els of temporal structure while maintaining a minimal resource
footprint.

Our results demonstrate that microWATCH is not only competi-
tive with complex baselines in univariate settings but vastly superior
in multivariate scenarios, making it a practical and effective solution
for enabling reliable on-device monitoring in IoT.

Acknowledgments

This study was supported by the UKRI EPSRC EP/Y028813/1 "Na-
tional Edge AI Hub for Real Data: Edge Intelligence for Cyberdistur-
bances and Data Quality”.

Xue et al.

References

[1] Roksana Haque, Ammar Bajwa, Noor Alam Siddiqui, and Ishtiaque Ahmed. Pre-
dictive maintenance in industrial automation: A systematic review of iot sensor
technologies and ai algorithms. American Journal of Interdisciplinary Studies,
5(01):01-30, 2024.

[2] Yohanes Yohanie Fridelin Panduman, Nobuo Funabiki, Evianita Dewi Fajrianti,
Shihao Fang, and Sritrusta Sukaridhoto. A survey of ai techniques in iot applica-
tions with use case investigations in the smart environmental monitoring and
analytics in real-time iot platform. Information, 15(3):153, 2024.

[3] Sultan Altarrazi, Tomasz Szydlo, Devki Jha, and Rajiv Ranjan. Automating data
quality monitoring for environmental air quality system. In Proceedings of the
40th ACM/SIGAPP Symposium on Applied Computing, pages 1612-1616, 2025.

[4] Lina Zhang, Dongwon Jeong, and Sukhoon Lee. Data quality management in the
internet of things. Sensors, 21(17), 2021.

[5] Maroua Bahri, Albert Bifet, Joio Gama, Heitor Murilo Gomes, and Sil-
viu Maniu. Data stream analysis: Foundations, major tasks and tools.
WIREs Data Mining and Knowledge Discovery, 11(3):e1405, 2021. _eprint:
https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/widm.1405.

[6] Gerrit]. J. van den Burg and Christopher K. I. Williams. An evaluation of change
point detection algorithms.

[7] Saurabh Shukla, Mohd Fadzil Hassan, Duc Chung Tran, Rehan Akbar, Irving Vitra
Paputungan, and Muhammad Khalid Khan. Improving latency in internet-of-
things and cloud computing for real-time data transmission: a systematic literature
review (slr). Cluster Computing, pages 1-24, 2023.

[8] Jianbing Ni, Kuan Zhang, Xiaodong Lin, and Xuemin Shen. Securing fog comput-
ing for internet of things applications: Challenges and solutions. IEEE Communi-
cations Surveys & Tutorials, 20(1):601-628, 2017.

[9] Riku Immonen and Timo Hadméldinen. Tiny machine learning for resource-
constrained microcontrollers. Journal of Sensors, 2022(1):7437023, 2022.

[10] Ryan Prescott Adams and David J. C. MacKay. Bayesian online changepoint
detection.

[11] Jeremias Knoblauch, Jack E Jewson, and Theodoros Damoulas. Doubly robust

bayesian inference for non-stationary streaming data with \beta-divergences. In

S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,

editors, Advances in Neural Information Processing Systems, volume 31. Curran

Associates, Inc., 2018.

Olivia A Grigg, VT Farewell, and DJ Spiegelhalter. Use of risk-adjusted cusum

and rsprtcharts for monitoring in medical contexts. Statistical methods in medical

research, 12(2):147-170, 2003.

[13] Zimo Wang, Satish T.S. Bukkapatnam, Soundar RT. Kumara, Zhenyu Kong, and
Zvi Katz. Change detection in precision manufacturing processes under transient
conditions. CIRP Annals, 63(1):449-452, 2014.

[14] Kamil Faber, Roberto Corizzo, Bartlomiej Sniezynski, and Nathalie Japkowicz.

Vlad: Task-agnostic vae-based lifelong anomaly detection. Neural Networks,

165:248-273, 2023.

Radek Svoboda, Sebastian Basterrech, Jedrzej Kozal, Jan Platos, and Michat Woz-

niak. A natural gas consumption forecasting system for continual learning scenar-

ios based on hoeffding trees with change point detection mechanism. Knowledge-

Based Systems, 304:112482, 2024.

[16] Gerrit JJ Van den Burg and Christopher KI Williams. An evaluation of change

point detection algorithms. arXiv preprint arXiv:2003.06222, 2020.

Ewan S Page. Continuous inspection schemes. Biometrika, 41(1/2):100-115, 1954.

SW Roberts. Control chart tests based on geometric moving averages. Techno-

metrics, 42(1):97-101, 2000.

[19] Jeremias Knoblauch and Theodoros Damoulas. Spatio-temporal bayesian on-
line changepoint detection with model selection. In International Conference on
Machine Learning, pages 2718-2727. PMLR, 2018.

[20] Kamil Faber, Roberto Corizzo, Bartlomiej Sniezynski, Michael Baron, and Nathalie
Japkowicz. Watch: Wasserstein change point detection for high-dimensional time
series data. In 2021 IEEE International Conference on Big Data (Big Data), pages
4450-4459. IEEE, 2021.

[21] Jeremias Knoblauch and Theodoros Damoulas. Spatio-temporal bayesian on-line
changepoint detection with model selection.

[22] Paul Fearnhead and Guillem Rigaill. Changepoint Detection in the Presence of
Outliers. Journal of the American Statistical Association, 114(525):169-183, January
2019.

[23] Sean]. Taylor and Benjamin Letham. Forecasting at Scale. The American Statisti-
cian, 72(1):37-45, January 2018.

[24] Piotr Fryzlewicz. Wild binary segmentation for multiple change-point detection.

[25] Xiangyu Bao, Liang Chen, Jingshu Zhong, Dianliang Wu, and Yu Zheng. A self-
supervised contrastive change point detection method for industrial time series.
Engineering Applications of Artificial Intelligence, 133:108217, July 2024.

[12

[15

==
)

	Abstract
	1 Introduction
	2 Related Work
	3 The Design of microWATCH
	3.1 The WATCH Algorithm: A Foundation for Change Point Detection
	3.2 microWATCH: Optimizations for Energy-Efficient Execution
	3.3 Ablation Study and Comparing with WATCH

	4 Experiment Setup
	4.1 Devices and Power Measurements
	4.2 Algorithm Implementation and Tuning
	4.3 Test-case Setup
	4.4 Memory Considerations and Hardware Constraints

	5 Results and Discussion
	5.1 Evaluation microWATCH Distance Measures
	5.2 Comparison with Selected Algorithms on IoT Devices

	6 Conclusion
	References

